二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
全域国土绿化美化深入推进。一是新增百万亩国土绿化行动进展良好。截至X月X日,据各地上报统计,全省新增百万亩国土绿化行动已造林施工面积X万亩,是年度目标任务的X%,……两市超额完成年度计划任务。省局实行进度周报制度,并于X月、X月分别组织召开了视频推进会,全力推进省政府百万亩行动任务落实。X、X市主要领导专门作出批示指示,……X市将百万亩行动纳入市政府工作考核体系,X市实施“四季彩林”十大示范工程;……等县(市、区)政府高度重视,制定有力措施,强力推进百万亩国土绿化行动;……等地林业部门创新方法机制,将国土绿化与地方重点工程、行动结合,合力推进国土绿化美化。二是国家造林计划任务有序推进。今年起,国家造林任务实行计划到县、落地上图的管理机制。省森林资源监测中心主动衔接、创新方法机制,帮助指导各地按时完成年度计划任务数据上报。经国家、省、县三级确认,全省X年上报国家造林计划任务X万亩,是国家预下达计划任务的X%。此项工作得到国家林草局高度肯定,并在全国培训班上作典型发言。三是“一村万树”示范建设持续开展。
近年来,各县(市)、市直有关部门认真贯彻落市委、市政府关于返乡创业的工作部署,深入践行“五大发展理念”和“一线工作法”,带着真情、带着责任,以“绣花”功夫做好返乡创业工作。X市籍农民工和农民企业家积极响应X委、政府的号召,带着多年积累的物质财富和从实践中获得的宝贵经验投身家乡建设,自强不息、爱岗敬业,在经济社会各个领域大显身手,涌现出创业有成、无私奉献的先进典型,成为推动X经济社会持续健康发展的生力军。在此,我谨代表市委、市政府,向各县(市)、市直有关部门的辛勤付出表示衷心的感谢,向积极行动、返乡创业、助推家乡发展的各界人士致以崇高的敬意!
1、传统的工作思路和服务方式亟待转变。 当前我国已经开始进入老龄社会,老干部人员的增加、人员结构以及对服务工作的要求也发生了很大的变化,在新的形势与任务面前,老干部工作如何创新,如何不断开拓工作新思路,如何创新工作方式方法,是我们亟待转变和解决的重要问题之一。 2、离休干部与退休干部的管理服务工作中存在的矛盾亟待解决。 当前离退休干部的整体状况是,离休干部的人员比重越来越小,退休干部的人员比重越来越大,工作压力越来越大,在政策落实上要求向离休干部倾斜,实际工作量上以服务退休干部为主,这是现实工作中普遍存在的问题,做管理型服务还是做劳务型服务,关系到今后的工作导向,这同样是需要认真研究的一个重要问题。
2022年,我县减灾救灾工作在县委、县政府的正确领导和上级业务部门的关心指导下,我们已做好冬春救助和灾害应急救助为抓手,不断强救灾工作的规范化、制度化和息化建设,创新工作思路,深化救助措施和积极做好全国自然灾害综合风险普查,切实保障灾民和受灾困难群基本生活保障。现就2023年我县防灾减灾救灾工作开展情况总结如下: ,:一、健全组织机构,落实工作职责关于防灾减灾救灾工作,我县始终坚持“预防为主、防御与救助相结合”的方针,推行“政府主导、成员运作、参与”模式,不断强化减灾防灾救灾共管理功能和社会服务功能。一是建立灾害预警发布机制、减灾防灾救灾综合协调和灾害应急管理体系、xx县应对自然灾害会商制度等,强部门之间沟通,确保自然灾害发生前早预警、早防范,灾害发生后早投入,将灾害造成的损失减小到最低。二是强部署,积极开展防灾减灾救灾宣传。紧紧围绕“x.xx防灾减灾日”和“国际减灾日”宣传活动主题,做好防汛抗旱、防震减灾、森林防火等有关知识宣传,提高群防灾减灾意识,努力营造全民参与防灾减灾的化氛围。通过开设专栏专题、展版宣传、印发发放科普刊物等各种形式,全方位做好防灾减灾救灾宣传工作。在两次宣传过程中,共发放宣传手册xxxxx余份,悬挂横幅xxx幅,设立展板xx块,发放宣传手提袋xxxxx余个,发放小礼品xxxxx余份。除此之外,还要求乡镇、社区、学校等广泛开展防灾减灾救灾知识宣传和组织开展避险应急演练,增强大家的防灾减灾意识和自救互救能力。三是建立和完善灾害息员息库,我县分别在2022年x月、x月对灾害息员息库息进行两次新,目前全县共有灾害息员xxx名,及时对全县xx个乡镇、街道办事处,xxx个行政村灾害息员进行新,防灾减灾救灾工作网格化管理工作进一步巩固。并要求全县灾害息员运用全国灾情管理系统手机版,一旦发生灾情,各行政村可以及时通过系统进行上报,确保了灾情报送的准确性和及时性。
(一)招商引资工作情况1.统筹制定全年任务,优化理顺工作机制。一是组织架构赋能,激发招商引资新活力。承接专班招商引资专项小组、综合协调专项小组工作,统筹推动各项市级专项招商工作。对接区委组织部开展xx区青年干部招商先锋队筹建及业务招商指导、业务培训、日常管理、成果考核等工作。二是考核指标固能,保障考核目标使命达。形成“企聚xx”2023年招商引资工作方案,梳理形成《xx区2023年企聚xx招商引资重点任务清单》,形成《“招商引资”考核指标评分标准(2023年)》《xx区青年干部招商先锋队招商任务考核标准》,保障目标任务落实到位。三是工作制度强能,实现工作推进高效行。建立周例会、周报、月总结汇报三个协调机制。制定标准化招商推介材料,组织招商引资专题业务培训。2.加快签约项目落地,助推实现“数税双收”。累计引进优质企业xx家,预计可实现年营收xx.x亿元、年纳税约x.xx亿元、投资总额xx.xx亿元。其中,预计年纳税xxxx万以上企业x家。xx家已落地企业中,市外投资企业共x家。深南东总部产业空间招商先锋队已引进项目x个,正在进行注册x个项目。3.推进储备重点项目。2023年1月至6月,储备重点在谈项目xx个。xxx强/央企/国企/外商投资项目x个、上市公司投资项目x个、准独角兽项目x个、国高企业项目x个。深南东总部产业空间招商先锋队已对接企业xx家,重点跟进项目xx个。4.拓宽招商引资渠道,集聚优质项目资源。召开招商引资推介会,会同市商务局举办“2023伦敦科技周—中英科技企业交流活动”。加大力度对接第三方资源,注重产业研究,发力国际资源,开展楼宇招商,广建渠道网络。
(一)规划编制情况。我们不断深化对XXX区发展的认识和再认识,经过反复讨论研究,进一步明确了XXX区的发展思路,即:坚持一个目标:建设全国一流空港经济示范区;实施两大战略:基础设施提升战略和产业集聚战略;推进三区建设:空港型国家物流枢纽承载区、XXX跨境电商综合试验区、XXX自贸区联动发展区;发展四大产业:航空物流、高端制造、航空服务、数字经济。我们积极配合市资源规划局完成《XXX区总体规划》编制,结合正在编制的《XXX市国土空间总体规划(2023—2035年)》要求,已将XXX区规划的有关修改意见反馈给市资源规划局。在新版总体规划尚未确定的情况下,经XXX区建设领导小组同意,确定紧邻机场南侧的4.9平方公里作为起步区,并具体规划了航空制造、航空物流、数字经济、商务服务4个产业分区。编制完成《起步区产业规划》和《起步区城市设计和设计导则》。会同市直相关部门完善起步区道路竖向规划,供水、排水、供电、燃气、供热专项规划以及管线综合规划。完成航空制造产业园项目的立项申报,定位测量、控详规划、五线图、规划条件核发,出让宗地平面图及竖向图测设,地价评估,修详方案设计、规划报批的总平、单体工程平立剖面图的编绘工作。完成XXX区双创加速器、口岸物流产业园、XXX区数据湖产业园建设项目的控详图及修详方案编制工作。配合市发改委完成国家物流枢纽规划编制工作,完成对俄出口跨境电商物流园区建设方案。
同志们:这次会议是市委市政主要领导亲自批示要求、亲自安排部署,组织召开的一次十分重要的会议。主要任务是:传达贯彻第**次全国信访工作会议和省委常委会、省政府常务会对信访工作的部署要求及全省信访工作会议和省信访工作联席会议**年第**次全体(扩大)会议精神,专题对**文博会,特别是2023年全国“两会”信访安全保障工作进行安排部署。刚才,会议传达学习了中央和省上相关会议精神,宣读了省委、省政府主要领导和市委**、市政府**市长的有关批示,通报了今年以来全市信访工作情况,**、**、**的有关负责同志作了工作交流发言,同时会议还印发了《2023年全国“两会”期间全市信访安全保障工作方案》,交办了省市两级摸排的涉访重点人员,请大家认真学习领会、切实抓好贯彻落实。下面,我就做好当前和今后一个时期,特别是2023年全国“两会”信访安全保障工作,强调两点意见。一、以最高的政治站位,充分认识做好当前信访工作的极端重要性和紧迫性
中心城区面积从不足x平方公里,到如今突破xx.x平方公里;交通建设从没有一米高等级公路,到如今构建起“铁公机”立体网络;农民人均纯收入从不足xxx元,到xxxx年底农村居民人均可支配收入飙升至xxxxx元翻开xx建地xx年的壮美画卷,沧桑巨变的背后离不开人才的付出、离不开人才的奉献。xx年筚路蓝缕的奋斗史,就是一部集聚人才、依靠人才、成就人才的发展史。——这是人才总量大幅跃增的xx年。从xxxx年每万人拥有人才不足xx人,到xxxx年每万人拥有人才xxx人,再到xxxx年每万人拥有人才xxxx人,增长近xx倍。——这是人才质量飞速提升的xx年。截至xxxx年底,全市大学以上学历人才占比由不足x%提高至xx%、增长xx余倍,一大批优秀人才获国家级荣誉表彰。——这是人才生态显著改善的xx年。从人才专项经费几乎为零,到人才工作投入近亿元;从人才缺乏基本住居保障,到拎包入住式人才公寓突破xxxx套;从没有专门的人才服务机构,到市县(区)全覆盖成立人才服务中心近悦远来的人才生态不断优化。
作为全国公民法治素养提升行动8个试点地区之一,成都的试点工作目前正处于全面实施阶段。作为试点地区的一分子,新津区勇挑试点重担,在精准普法方面下功夫,第一时间制定试点工作方案,细化24条措施,新津区普兴街道岳店社区、新津实验高中被确定为成都市公民法治素养观测点位。在实施国家工作人员“法治提能”行动中,新津区将法治建设成效纳入区管领导班子和领导干部年度考核内容,区政府常务会开展会前学法72场次,全区66家单位接入四川省学法考法平台,共计2766名国家工作人员参与年度学法考法。实施青少年“学法筑基”行动的关键,就是要把法律知识变得有趣,让青少年听得懂、学得会、记得住。为此,新津区选派54名政法干警担任中小学校法治副校长,打造新津中学、新津一小、新津实验高中3个特色青少年法治教育阵地,并依托法治教育阵地开展专题教育活动180余场。
二、2024年工作打算(一)推动完善公司治理和内控体系建设结合国企改革三年行动成果,加快推进公司标准化、合规化和现代化建设体系,确保各项改革举措落地落实。(二)推动业务拓展力度持续推进X信公司与省农担的战略合作,进一步完善业务流程和工作指引,深入乡镇抓好业务推介,加大担保产品开发,拓宽金融机构合作范围。(三)推动非融资担保业务开展积极协调相关部门配合开展应付款项、诉讼保全、工程履约及民工工资履约等担保业务,构建“政、银、企、担”全链条融资担保模式,加快拓展公司非融资担保业务。(四)推动应急转贷业务开展积极推进建立应急转贷业务资金池,完善应急转贷资金的管理使用办法,切实解决县域中小微企业和“三农主体”“转贷难”、“转贷贵”的问题。(五)推动化解公司面临困境积极争取县委、县政府及县级部门的支持,研究并制定切实可行的方案,全面解决X森公司遗留问题,做强做大X森公司,重启与县内各大金融机构的合作,充分发挥融担功能更好服务于县域经济。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。