二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
评价:这段话表明傅雷朋友的角色。他把孩子当成朋友,为人生得一知己而感到兴奋、自豪。在读这段话时声音应洪亮,感情应充沛。小结:我们组还发现傅雷对傅聪的称呼有很多,如聪、聪儿、孩子、亲爱的聪、亲爱的孩子。有时两个同时用,比如“聪,亲爱的孩子!”一直以来,我们都觉得父爱不善表达,可是傅雷的这些亲昵直白的称呼表达了他对傅聪的爱,是这么的温柔,如慈母一般。所以,读这些称呼时我们要读得轻柔深情些。【设计意图】这一环节不仅能展示学生的阅读成果,还能使学生感受到阅读的成就感,并在相互交流中产生更深刻的理解和感悟,在朗读和评价中体会父爱。二、感悟成长1.解读“虎爸”师:在同学们的阅读分享中,傅雷这样一个深爱儿子的父亲形象深入人心。其实,傅雷早期对傅聪的教育是很严苛的,是一个“虎爸”的形象。我们一起来看一则小故事。
2、学习整理物品,增强自我服务能力。3、能在同伴面前大胆讲述,发表自己的意见。活动设计: 最近这几天,孩子们都很兴奋,因为下周六我们就要去秋游了。孩子们除了讨论上海什么地方好玩,还不时商量着要准备带的东西,阳阳说:“昨天晚上,妈妈带我上超市买了饮料。”凝儿说:“我妈妈还给我买了双新跑鞋,,我秋游去要穿的。”雷雷也插上一句:“我还要带上我的玩具坦克车。”“出去玩,不好带玩具的。”雯雯提出反对。“行的!”“不行!”……对呀!出去玩到底能不能带玩具呢?出去玩到底该带什么东西呢?带着孩子们产生的这些问题,我设计了本次活动,引导孩子通过探索、讨论、交流、思考等,拓展自己的生活经验,增强自我服务的能力,进一步提高孩子自主解决生活中实际问题的能力。活动准备:1、人手一个小背包、小零食、晕车药、塑料袋等等2、幻灯片活动过程:1、观看幻灯片,提出问题:师:照片上的人要到哪里去?他们的背包里会带些什么东西?
2、通过活动引导幼儿初步了解各种花茶的名称。 3、感受粗浅的茶文化,尝试以茶代客。活动准备:各种各样的花茶若干,一次性透明杯若干,小勺若干,开水壶(茶桶)六只,各种花的字卡。活动过程:一、情景导入 1、语言导入玩了“老狼老狼几点了”这个游戏,累吗?(累)现在你最想做的一件事是什么?(休息、喝水)对啊!我也累了,看看,这里有水吗?(有,幼儿桌子上的茶杯里有白开水)喝吧,喝吧! 2、情感深入哈哈,我可是第一次和你们做游戏哦,来为我们的第一次合作成功干杯(幼儿在位子上举杯)(让幼儿发现我的茶里有东西,而且是有颜色的)想知道为什么?好,可以!
2、发展幼儿的观察力及表现力。活动准备:几盆色彩、造型不同的花,盆景图片若干、挂历纸、图画纸和剪好的小花盆每人一张、糨糊、抹布。活动过程:1、引起兴趣。出示造型、色彩不同的几盆花,引导幼儿进行观察,围绕话的色彩和造型来谈,这些花美在那里?2、陈列出盆景图片让幼儿欣赏,请幼儿从色彩和造型两方面来谈一谈自己最喜欢的图片。
【活动目标】1、培养幼儿提出问题并且自己寻求问题答案的意识和能力。2、培养幼儿对种子的好奇心和探究欲望。3、让幼儿了解各类蔬菜和水果及名称。4、引导幼儿观察、发现各类蔬菜和水果的种子,同时了解种子的形状、颜色、大小。 【活动准备】1、各类水果、蔬菜若干 2、盘子若干 3、油菜、芹菜、白菜、萝卜、韭菜、香菜、葱等蔬菜的种子 【活动过程】 (一)激发幼儿的学习兴趣 鼓励幼儿把自己带来的蔬菜和水果的名称相互介绍一下,让幼儿了解各类蔬菜和水果及名称。 (二)引导幼儿将蔬菜、水果分类 引导幼儿按照豆类、瓜果类、青菜类等进行分类。
【活动目标】1、通过一系列有关绳子的游戏,激发幼儿对玩绳的兴趣,让幼儿体会到玩绳的快乐;2、通过玩绳,充分发挥幼儿的想象力创造力;3、通过玩绳,使幼儿掌握简单的玩编技巧和方法,训练幼儿手、眼协调能力。【活动准备】 每人两根绳,一份编织工具(利用纸板按照一定图形制上经线,另一根作为纬线进行编织)课件绳编作品若干、小魔术盒一个。【活动过程】 1、利用魔术盒导入活动。 师:小朋友,老师这里有个小盒子,你们看里面有东西吗?老师要变个小魔术,看能变出什么来?(利用变魔术的方法,引起幼儿的兴趣)2、利用提问和实际操作的方法,让幼儿探索更多的玩法。 师:小朋友,你们想一想,绳子都能做什么用呢? 幼:翻花绳、当鞋带、当头绳、拼图案、当马鞭、跳绳…… 师:绳的用途可真多呀,下面老师给你们准备了一根漂亮的绳,你们试一试,看一看,玩一玩,看谁还能发现更多的花样。 幼:幼儿都在积极的用一根绳玩,有的系在脖子上当项链,有的当腰带,拼出了许多的花样,象花蝴蝶、蘑菇、花瓶、小树、鞋子、星星…… 师:刚才小朋友说可以翻花绳,现在小朋友就把绳的两头系在一起,翻一翻花绳,动脑筋,看谁的花样多,可以自己翻,也可以与伙伴一起翻。 幼:翻出了太阳、花布、大桥、死扣、星星。 师:小朋友,玩翻花绳,玩的真高兴,玩出许多花样,现在把绳子套在脖子上做个漂亮的项链吧。 幼:孩子们都用自己的方法把绳系在了脖子上。 (通过老师的启发引导,使孩子在原有经验的基础上,都能积极地去探索、去表现,也使幼儿在玩中乐意与伙伴一起合作,体会到了玩绳的快乐,使重点得以突破,而且把绳系在脖子上这一环节,又为进入下一环节做好了准备,使孩子们自然把绳放好。)3、丰富幼儿的知识面,展示绳的其他作品。 师:小朋友刚才玩花绳,玩得非常好。下面看看绳还可以作什么?播放课件,让幼儿欣赏。 幼:孩子们感到非常好奇,啊,真漂亮﹗ 师:老师把这些用绳子制作的东西带来了,请小朋友们到前面来看一下。 幼:孩子们非常高兴地看、摸着这些作品,议论着,辨别着,这个是龙,那个是小猪……我在电视里看过(通过近距离观察、触摸,使幼儿的好奇心进一步得到提升,为下一环节做好了铺垫)。
[活动过程] 一、导入环节 "这是一个沙包,请你仔细看,它怎么样了?" 1、教师操作沙包从空中落下。 2、谈话:在日常生活中,你见过什么东西落下来,它是怎么落下来的? 3、奖励1个智慧苹果 "你们真是一群认真观察、大胆表现的孩子,奖励你们1个智慧的苹果。" 二、挑战游戏一-----探索两种不同的物体从同一高度同时落下有什么不同 1、猜一猜 出示沙包和小手绢,帮助幼儿理解同一高度、同时的含义。 猜一猜,它们从同一高度同时落下会怎样? 2、教师验证幼儿猜想,引导幼儿观察它们下落的速度及路线。 3、教师示范在记录纸上用符号记录结果。 如:用圆圈代表沙包,正方代表手绢,在它们下面用自己喜欢的符号表示他们下落的样子与速度。 4、幼儿操作记录,教师巡回指导。 "你们也可以选两样不同的东西,让它们从同一高度同时落下,仔细观察它们落下时有什么不同,把看到的结果记录下来。找一个碰不到小朋友的地方试一试。" 5、展示记录单,学习多种记录方式。 1)教师提问不明白的地方,请问:xx小朋友,这个表示什么意思? 2)幼儿间提问 你对谁的记录不明白,可以向老师刚才那样提问。 3)小结幼儿的记录方法。 6、奖励智慧苹果 为了表扬你们遵守规则、物归原位的好习惯,奖励你们2个智慧的苹果。
活动目标:1、感知变色龙的特性,尝试选择与场景相同的颜色给变色龙涂色,学习涂色的正确方法。2、在和变色龙说说玩玩游戏的情景中体验游戏的快乐。活动准备:花园背景图一幅、变色龙人手一份、和场景颜色相同的各色炫彩棒(红色、绿色、黄色、咖啡色、兰色、橘黄色)、透明的变色龙。 活动过程:一、故事导入《它躲到哪里去了》,引起幼儿的兴趣。1、你们听过变色龙的故事吗?为什么叫他变色龙呢?(变色龙有一种其他小动物都没有的本领,是什么呢?)莎莉的变色龙今天就在我们的教室里,看谁能把它找出来? 教师可以数123让幼儿找,如果幼儿找不到可以稍加提示。师:找到了!变色龙躲在窗上,它变成了什么颜色?要是眼睛不尖就找不到了。(做惊奇状)咦?窗子上有一个什么东西啊?让我把它请过来看一看,哦,原来是莎莉的变色龙。
2、学习在指定的范围内拼贴小纸片,掌握拼贴技能。 3、发现撕贴画的特殊效果,从而产生对撕纸活动的兴趣。活动准备: 收集各种各样的彩色挂历纸。幼儿用书人手一册。浆糊。活动过程: 1、引导幼儿观察幼儿用书中的撕贴画,激发幼儿对撕贴画的兴趣。 画面上有什么?它和我们以前的画画有什么不同?这只苹果和梨子是用什么做的?感知撕纸画特有的风格,激发幼儿产生撕纸画的欲望。 2、教师示范讲解撕纸画的具体要求。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。