二、活动准备 录音机、磁带、电钢琴;白胡子、白眉毛每人一套;拐杖一根。三、活动过程 1、幼儿听音乐做韵律进活动室。 2、练声曲《唱歌》、《叫声》。 3、熟悉歌曲内容 教师范唱歌曲,请一名教师扮演老公公,幼儿边听边观看表演。
活动准备:1、五只小老鼠和大黑猫的图片。2、胸饰若干。 活动过程:(一)出示图片,创编歌词。1、今天我们班来了一位小客人,我们一起拍拍手请它出来吧!(幼儿拍手)2、从背后出示小老鼠,原来是“小老鼠”来了(加表情),小老鼠它长得是什么样子的?(眼睛小小的、圆圆的,还有个本领,会骨碌骨碌转;嘴巴尖尖的,幼儿学学,尾巴细细的、长长的)
活动目标:1、通过故事情节,帮助幼儿感受理解音乐三段体的变化过程。2、初步学习合拍地做胖鸭走、瘦鸭走以及做运动的动作。3、能根据音乐的节奏及乐句变化创编健身动作及图谱。4、感受音乐活动带来的快乐,知道肥胖会给人的活动带来不方便,我们应提倡合理饮食,运动健身。 活动准备:音乐《瑞典狂想曲》片段(前半段)、图片(胖鸭、瘦鸭)、小图谱纸人手一份,绘画笔人手一支活动过程:
2、巩固小老鼠、小雄、大象的步法。3、复习音阶的唱法。准备活动:小老鼠、小雄、大象布偶活动过程:一、进场活动:《小老鼠和小花猫》二、引起兴趣1、故事引出:一只老鼠到森林里玩,看到一幢房子。小老鼠轻轻的推开门,看到房子中间有着很漂亮的楼梯。走一格楼梯,楼梯就会发出好听的声音do、 re、 mi ……
2、幼儿能愉快地和教师、同伴一起游戏,体验共同游戏的快乐。 3、 3、幼儿能有节奏地朗诵象声词“吡呖叭啦、吡呖叭啦、蹦叭”。 活活动准备:鞭炮一串,与儿歌内容有关的图片若干,猫头饰若干 活活动过程: 1、教师出示鞭炮,引导幼儿模仿鞭炮声,教师念象声词“吡呖叭啦、吡呖叭啦、蹦叭”并引导幼儿有节奏地朗诵。 2、学习儿歌《老鼠娶亲》 (1)、教师出示老鼠(戴着大红花,穿着新郎的衣服)图片,引导幼儿回忆《还珠格格》中娶亲的场面。(幼儿回答:有鞭炮、吹喇叭、跳舞、敲锣打鼓、花轿等) (2)、 <BR><P></P>教师有表情地朗诵儿歌,幼儿理解儿歌内容。
二.活动目标⒈感知童话故事结构,尝试在认识和想象的基础上,改编故事结尾,并用语言清楚地表达出来。⒉培养幼儿爱劳动,爱动脑和愿意与同伴分享劳动成果的好品德。三.活动准备⒈课件《小老鼠种西瓜》⒉西瓜四个、车轮、风帆、橡皮泥、小木棍、彩色纸、漿糊、剪刀、刀、完整瓜皮、半圆瓜皮等。四.活动过程一、 欣赏故事⒈教师以提问的方法引出故事名称,引起幼儿注意。⒉讲述第一遍故事,边讲边播放 <BR><P></P>课件。(出现大西瓜和小老鼠在屏幕上,突出西瓜大、老鼠小)⒊讲述第二遍故事,边讲述边播放。(动画型式播放故事基本内容)
活动准备:打击乐器:小玲、铃鼓、圆舞板若干磁带,音响,幼儿人手两根彩条 活动过程 一、教师带领幼儿随着音乐表演舞蹈《大中国》 二、学习探索用拍节奏,表现《大中国》舞曲。 1、刚才,我们小朋友舞动彩条表演《大中国》,下面,我们来学习拍手伴奏表演《大中国》音乐好吗? 2、教师反馈幼儿的想法,并将挥动彩条的1-17喝4-25小节的动作改成拍手的动作。 3、幼儿随乐练习改变的动作 4、幼儿尝试看教师指挥做拍手的节奏动作。“我来指挥,你们看我的动作,我指到哪里,哪里的小朋友就拍手。”
一、说教材 《青山不老》是统编教材小学语文六年级上册第六单元的一篇略读课文。这篇课文语言生动优美,现实和过去互相比照,叙述与描写互相辉映,用清新地笔触向我们描绘了一位山野老农,面对自然条件地恶劣和生活条件地艰辛,义无反顾地投身到植树造林工作中,用十五年地时间在晋西北奇迹般地创造了一片绿洲,实现了自己地人生价值。 二、说教学目标 1.读读记记“粼粼、肆虐、盘踞”等词语。 2.有感情地朗读课文,了解课文内容。 3.理解含义深刻地句子,感受老农改造山林、绿化家园地艰辛和决心。 三、说教学重难点1.理解老人所创造的奇迹,感受老人改造山林、绿化家园的艰辛与决心。 2.体会“青山不老”的真正含义。激发学生热爱地球,保护环境的思想感情。
大家好!我说课的题目是六年级语文上册第19课《青山不老》。下面我将从教材分析、教学目标、教学重难点、教法学法、教学过程及板书设计等几个部分进行谈一谈我对本课的构思。一、教材分析 《青山不老》是六年级语文上册第六单元的一篇课文。这篇课文语言生动优美,现实和过去互相比照,叙述与描写互相辉映,用清新的笔触向我们描绘了一位山野老农,面对自然条件的恶劣和生活条件的艰辛,义无反顾地投身到植树造林工作中,用15年的时间在晋西北奇迹般地创造了一片绿洲,实现了自己的人生价值,造福于后代。让我们看到了我国人民保护自然,改造山林,绿化家园的坚定决心。本课是略读课文,要求一课时完成教学任务。
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
当我见到毕业生名册上你们的名字时,我为你们每一位(甲),我(乙)你们离校后,都能过“不负此生”的生活。首先,我希望你们能简朴地生活。容我提醒各位一句:快乐与金钱和物质的丰盛并无必然联系。一个温馨的家、简单的衣着、健康的饮食,就是乐之所在。漫无止境地追求奢华,远不如简朴生活那样能带给你幸福和快乐。其次,我希望你们能过高尚的生活。我们的社会有很多阴暗面:不公、剥削、诈骗等等。我吁请大家,务必要庄敬自强,公平待人,不可欺侮弱势的人,也不可做损人或损己的亊。高尚的生活是对一己的良知无悔,维护正义,亊亊均以道德为依归。这样高尚地生活,你们必有所得。
在实际工作中,一是积极开展法治宣传。区法学会积极以“法律服务进基层”为载体,组织会员积极投身法律“六进”活动。先后与区综治办、区610办和区文体旅游局等单位利用群众性广场文化活动,开展多次集中法制宣传与服务,共计展出各类法律宣传展板×余块儿、标语条幅×余条,服务群众两万余人次。二是积极参加省、市法学会组织的课题建议活动。对于上级法学会的课题招标,区法学会高度重视,在河南省法学会征集20**年度研究课题建议时,积极报送了《公安保密:要“喊”在口上“落”在脚下》的议题建议;在市法学会征集法治宣讲主题建议时,积极报送了《有关民间借贷与非法吸收公众存款案件的合理界定,以及民间借贷纠纷案件的预防和化解》的主题建议。同时,针对当前社会矛盾纠纷预防和化解工作,加强了对行业调解、司法调解的研究和探索。三是积极参与社会治理。区法学会积极组织会员参与多层次、多形式的平安创建和法治创建活动
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。