1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
二、幼儿情况大班的幼儿已经掌握了一些基本的日常生活用语和课堂用语,因此进行全英文教学活动。三、活动目标1、通过轻松、自然、愉快的英语游戏设计,让幼儿积极参与英语活动,大胆用英语进行表达,并感受英语活动带给他们的快乐与自信。2、复习两首英语歌曲:《松饼先生》《快乐拍手歌》3、学习新词汇:碗、盘子、筷子、调羹。学习新句子:我是一个厨师。四、活动准备碗、盘子、筷子、调羹若干厨师帽和厨师围兜每人一套神秘箱音乐磁带五、教学方法1、游戏法孩子生来是好动的,是以游戏为生命的。游戏化教学有着其他活动不能代替的功能和价值。英语与游戏的结合,能充分激起幼儿学英语的兴趣,密切师幼关系,尤其能提供给幼儿轻松自然愉快运用英语的机会。2、直接法全英文教学形式,直接培养幼儿简单英语思维以及表达习惯。3、重复法不断重复单词与句型,刺激幼儿印象,强化巩固记忆。4、赏识教育法鼓励与表扬幼儿的每一次进步,培养孩子们的兴趣,并帮助他们树立信心。六、活动过程1、问候2、句子:我是一个厨师把小朋友打扮成厨师,引起幼儿兴趣。学习句子:我是一个厨师。热身歌曲:《松饼先生》3、游戏——神秘箱。引出活动新内容——碗、盘子、筷子、调羹。(教师示范奏乐)4、游戏——找、找、找。播放音乐,幼儿在教室里寻找碗、盘子、筷子、调羹。5、幼儿分组向大家介绍自己找到的东西,并分组奏乐。
依据《中华人民共和国合同法》和相关法规的规定,乙方接受甲方的委托,就_______________________设计事项,双方经协商一致,签订本合同,信守执行。一、合同内容及要求:二、设计费用:设计费用为_________每平米,共_________平米,总计为:人民币¥______________元,(大写:_______________元整)。三、付款方式:1、甲方需在合同签订时付委托设计与制作总费用的50%即人民币¥_________元(大写:_________________)。2、乙方将设计制作印刷品交付甲方时,甲方需向乙方支付合同余款,即人民币¥______________元(大写:_________________)。四、设计与制作作品的时间及交付方式:1、设计期限:________年____月_____日至________年_____月____日止2、乙方需在双方约定的时间内完成设计方案。因甲方反复提出修改意见导致乙方工作不能按时完成时,可延期执行,延期时间由双方协商确定。五、知识产权约定:1、甲方在未付清所有委托设计制作费用之前,乙方设计的作品著作权归乙方,甲方对该作品不享有任何权利。2、甲方将委托设计制作的所有费用结算完毕后,甲方拥有作品的所有权、使用权和修改权。
设计期限为 天,从乙方收到甲方支付的定金后开始计算,到向甲方交付全套设计图纸之日为止。因甲方变更设计要求或对乙方意见未及时答复,其耽误的时间应从合同约定的设计期限中相应扣除。2.设计交图步骤及时间:(1)甲、乙双方当面协商满意后确定设计详细内容及金额,即签定本合同,同时支付定金人民币 元。乙方收到定金后 天内,向甲方提交装修设计方案图及平面功能定位图,如乙方未提交装修设计方案图及平面功能定位图,则双倍向甲方返还定金。 (2)甲、乙双方初步确定平面方案及初步确定设计概念后,同时支付首期设计费人民币 (按以上2(1)支付的人民币定金自动转为首期设计费)。乙方收到设计费后 天内,向甲方提交较详细装修设计方案包括主要立面图。(3)甲方确认立面方案、天花方案即支付第二期设计费人民币,乙方收到设计费案后 天内,向甲方提交详细装修施工图及效果图。(4)甲方签字确认设计施工图后即支付第三期设计费人民币,乙方向甲方提供全套正式设计施工图纸。 (5)工地开工后设计师配合施工队现场指导并对业主提供材料及工程质量咨询服务。
第一条 定义除上下文另有要求外,以下各词和用语,应具有如下的涵义:1.1 “适用法律”指在中华人民共和国和长沙市已颁布并生效的具有法律效力的法律和其它文件。1.2“服务”指本协议设计任务书所述的,按照协议由乙方完成本项目而进行的工作。1.3 “货币”指人民币元,本协议另有约定的除外。第二条 解释合同文件的组成及优先顺序:(1) 本合同协议(由标准及特殊条件、担保条款(如有)三部分组成)及附件(2) 经甲方认可的乙方承诺(3) 招标文件及其附件(如有)(4) 投标书及其附件(如有)(5) 中标通知书(6) 标准、规范及有关技术文件第三条 项目概况及服务内容、标准3.1 项目概况及服务内容、标准等见第二部分规定。3.2甲方为建造本项目所需要的设计服务的任何内容,并不会因为本协议的局限而被视为遗漏,乙方保证在规定的期限内按质按量完成规划部门、政府相关部门和甲方所需的全部设计文件。第四条 设计服务费4.1 本协议设计服务价格总额及费用明细见第二部分的规定。4.2 本协议第4.1条规定的设计服务价格总额为固定价格,该价格包括所有人员费用、印刷打印出图、电子版图纸刻录费用、通讯、差旅、交通、设计补充完善等所有在乙方执行本协议所述的服务中发生的全部费用。除非另有规定,否则此价格不以任何理由改变。
精装修住宅正成为一种发展趋势,那么室内精装修设计合同是怎样的呢?以下是为大家精心整理的室内设计精装修合同,欢迎大家阅读,供您参考。更多内容请关注。 室内精装修设计合同(一) 甲方: 乙方: 依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就_______________________设计事项,双方经协商一致,签订本合同,信守执行。 一、合同内容及要求: 二、设计费用: 设计费用为_________每平米,共_________平米,总计为:人民币¥______________ 元,(大写:_______________元整)。三、付款方式: 1、甲方需在合同签订时付委托设计与制作总费用的50%即人民币 ¥ _________ 元(大写:_________________)。 2、乙方将设计制作印刷品交付甲方时,甲方需向乙方支付合同余款,即人民币¥______________元(大写:_________________
活动内容:人是五官——眼睛活动目标:1。了解眼睛对人的重要性 2.懂得如何保护眼睛 3。培养幼儿关心、帮助残疾人的情感活动准备:录音机、磁带、眼罩与幼儿人数相等、三幅头像画、盲人图片、一些关于保护眼睛的图片、“眼睛”六个活动过程:一:引出主题1. 游戏:指五官轿是说一个五官的名称,幼儿必须又快又准得指出来2看说贴得准。活动
关于高中学习的国旗下讲话步入高中已将近一学期了,我们的学习生活也渐渐地进入正轨。快节奏的学习生活有时会压得我们喘不过气来。从桌角堆得高高的试卷中拍头,揉揉微酸的太阳穴,黑板上复杂的数学题刺得我们眼睛生疼。或许宵衣旰食的生活让我们的嘴角有了一丝连自己都难以察觉的冷漠。其实学习是一个温长的曲折的过程,途中会遇到些挫折与困难,你能否正确面对,能否做一名快乐的学习者?既然环境有能改变,那么不妨试着以乐观的心态去面对每一天的学习,这样我们就会发现我们拥有很多别人不能拥有的幸福;每天早早爬起的我们总能呼吸到清晨第一口新鲜空气。伴随着优美的旋律,我们开始做起早操,尽情舞动自己的青春,每一个动作都散发出蓬勃的朝气。教室里总能感受到老师一丝不苟的敬业精神及同学们埋头苦干的氛围。
为大家收集整理了《高中学生会主席国旗下讲话范文》供大家参考,希望对大家有所帮助!!!敬爱的老师们,亲爱的同学们:大家早上好!我是郧阳中学新一届学生会主席,来自高二班的张彦阳。首先,我代表新一届学生会向给予我们关怀和信任的老师们表示衷心的感谢,向给予我们支持和帮助的全体同学表示深深的谢意,向给予我们鼓励、寄予我们厚望的上一届学生会全体成员表示崇高的敬意,谢谢你们!今天,我怀着十分激动的心情进行国旗下演讲。作为新一届学生会主席,我深知自己身上的担子不轻,权力越大,责任越大,但是有如此优秀精英们组成的团队,让我对未来的工作满怀信心。我将会以百分之两百的工作热情去担当起这份重任,克服困难,迎接挑战,努力实现我竞选中所设想的那样:将这一届学生会打造成最为辉煌的一届,名留校史!
亲爱的老师们、同学们,大家好。我是XX届的洪超。今天很高兴可以重返校园,和大家分享一下自己高中阶段的心得。我代表所有XX届学生向通河中学勤勤恳恳为我们奉献的各科老师、向高瞻远瞩的校领导还有为我们服务的校务人员表达深深的感激。三年前,接到通河中学的录取通知书的时候,我曾经为没有进入一所重点中学感到十分失落。但是,在通河中学的三年,我感受到这座年轻的学校蓬勃的生机,也逐渐转变原先的看法。我时常想,倘若我校有那些重点中学一样悠久的历史,我们绝对不会比它们差。就像,在通河的最后一年,我校获得了区重点的称号。一个又一个荣誉,让我深刻体会了往届学长挂在嘴边的那句:今天我为通河自豪,明天通河为我自豪。高中,是通向大学的最后一处碉堡,也预示相当难熬的一场持久战。一言以蔽之,这个时段需要我们广泛参与学校的活动锻炼自己的能力,也需要在考场拼成绩、拼心态、拼体力。
2.内容内在逻辑本单元包括两课。 第六课设计了“走近老师”和“师生交往”两框内容。第一框通过 了解不同时期的老师,让学生从多层面、多角度认识老师这一职业群体;结合学生学 习实际,发现风格不同的老师,进一步引导学生学会接纳、尊重不同风格的老师,继 而建立对老师应有的正确“印象”;构建与老师良好交往的逻辑起点。第二框通过帮 助学生正确对待老师的引领与指导、表扬与批评以及与老师的矛盾与冲突,使学生认 识到亦师亦友的师生关系是师生交往的理想状态;并以实际行动与老师共建良好师生 关系,共度教育好时光。第七课设计了“家的意味” 、“爱在家人间”和“让家更美好”三框内容。第一框通过 引导学生联系已有的生活经验认识“家”是什么,结合对“家”及有关优秀的传统文化 进行探讨与分享,认识中国人的“家”是怎样的;在对“家”基本认知的前提下,第二 框进一步引导学生理解家的最本质内涵是“爱” ,并以实际行动去呵护“爱”;在对 “家”和“爱”的认知基础上,第三框进一步引导学生学会与家庭成员友好相处,从 而构建和谐的家庭关系,让家更美好。
①政府的宗旨是全心全意为人民服务②政府要坚持依法行政,努力建设法治政府③行政机关要保障公民的知情权、参与权、表达权、监督权④人民可以随心所欲地点评政府的工作A. ①②④ B. ②③④ C. ①②③ D. ①③④9. 在道德与法治课堂上,赵老师为大家展示了下列案例,同学们对此作出了解 读。其中正确的有( )①市人大常委会召开立法听证会-科学立法②刘某经营餐馆却没有办理营业执照-全民守法③执法机关检查疫苗企业生产经营状况-严格执法④人民法院在审理案件时进行庭审直播-公正司法A. ①②③ B. ①③④ C. ①②④ D. ②③④10. 某校学生以“全民守法,中学生在行动”为主题开展了法治情景剧 、法治海 报、模拟法庭等活动。这些活动加深了学生们对法律的认识, 提高了学生们的法 律意识。下列选项中,中学生应该做的是( )①看到有人跌倒立即上前帮助 ②利用假期到社区清除小广告③努力为法治中国建设贡献力量 ④敢于并善于同违法犯罪行为作斗争A. ①② B. ②③ C.②④ D. ③④
【作业分析】本题考查创新改变生活。防雨神器自动收晾衣服的灵感来源是下 雨忘记收衣服被批评,体现创新是来源于生活、来源于实践。“智能晴雨棚”打 破了传统的只能晾衣服的常规。而由教材内容可知,创新是改革开放的生命, 改革在不断创新中提升发展品质,所以②错误;故本题选 C2. (改编) 利用“安康码”自动定位,即可监测附近新冠肺炎感染病例发病点; 通过输入自己的手机号码,即可通过“通信大数据卡”判断自己是否到访过高 危地区;通过皖事通 APP“密接人员自查”即可查询自己是否曾与新冠肺炎感染 患者接触……疫情发生以来,大数据、健康码、无人机、机器人、测温仪等众 多科技创新成果纷纷登场,助力疫情防控,提高了抗击疫情的精准化水平。这 表明 ( )①标志着我国已经成为科技强国②实施创新驱动发展战略成效显著③创新应成为国家发展进步的中心工作④创新的目的是增进人类福祉,让生活更美好A.①② B.②③ C.①④ D.②④【评价实施主体】教师【评价标准】D【作业分析】本题考查科技创新改变生活中创新的重要性。我国现在还不是科 技强国,但科技自主创新能力不断增强,所以①说法错误。
6.家书,蕴含着家风、家训、家教,也承载着社会记忆和文化传承,为此,阜阳市第 十七中学开展了“一封家书致父母”主题活动。开展这一活动 ( )A. 旨在引导学生传承传统美德 B.表明文明因交流而丰富多彩C.是全面继承传统文化的体现 D.显示了中华文化是最优秀的7.2021年7月25日,我国世界遗产提名项目“泉州:宋元中国的世界海洋商贸中心”顺 利通过联合国教科文组织第44届世界遗产委员会会议审议,成功列入《世界遗产名 录》。至此,我国世界遗产总数升至56项。“泉州:宋元中国的世界海洋商贸中心” 成功申遗( )A.体现了中华优秀传统文化是世界上最优秀的文化B.说明了传统文化是一个国家兴旺发达的不竭源泉C.是保护和传承中华优秀传统文化的最佳途径D.能够进一步增强中国人民的自豪感,坚定文化自信8.三星堆遗址新发现6座“祭祀坑”,现己出土重要文物500余件。
本次活动由三个环节构成,即“动――静――动”,这拉,有利于突破重难点,我是这样掌开教学思路的。1、激发兴趣(第一环节)活动开始,教师扮演松鼠妈妈,幼儿扮小松鼠,在欢快的音乐声中,“妈妈”带着孩子们在草地上玩片刻后回到房子里休息,妈妈问:“孩子们,我们住的房子会动吗?你见过会动的房子吗?可是,有一只松鼠宝宝却建造了一座会动的房子,这到底是怎么一回事呢?”我以这样的形式导入,目的是激发幼儿兴趣,带着疑问听故事。2、组织教学,学习重点(第二环节)这一环节是让幼儿理解掌握故事内容,也是完成教学重点的主要环节,可分为三个小部分:(1)、视听结合,整体感知通过观看电脑课件,幼儿园完整欣赏故事,使他们对故事内容有初步整体的印象。设计提问:故事中有谁?会动的房子到底是怎么一回事?(2)、一问一 答,紧扣重点幼儿分片段观看,教师根据故事内容进行提问,启发引导,帮助幼儿具体感知,理解故事内容。设计提问:小松鼠在哪里造了房子?房子造好了发生了什么事?小松鼠分别到了哪些地方?那儿美吗?引导幼儿学习用语言进行表述,并模仿自然界美妙的声音:风声、海浪声、马儿奔跑声。