教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
广场为开放式,从四面都可进入,但在东北和西南各有一个木制长廊,上面缠络着紫藤萝,每到夜晚,这里点亮一盏盏小彩灯,与紫藤萝相辉映,煞是好看。广场正北对着的是公园管理处,共2层。南面是万福园芙蓉广场富强店,面积有4000多平方米,是一个超大型的商场。这就是我们的芙蓉广场,怎么样,很漂亮吧,有空来玩玩吧!生点评:何秀同学写芙蓉广场采用“总—分—总”的结构,开篇先点明广场的位置、特征,然后介绍得名原因、广场的规模地势,再按照游踪介绍,最后总结。全文采用多种说明方法,且融入情感,既让读者了解了芙蓉广场的有关知识,又表达了自己的喜爱之情。师点评:文章介绍群体建筑——广场,抓住芙蓉广场秀美、雅致的特点,重点介绍第一层主题广场,略写周边草坪及建筑,详略得当,层次分明。另外,作品采用“总—分—总”的结构,以游览的方式引导读者了解广场建筑,让文章生动亲切,也是作品的亮点。
3.小组讨论:诗人为我们呈现出了什么样的人间四月天图景?结合诗句分析。教师:把学生分为6至8个小组讨论,最后每组选出代表回答,教师点评各组答案,最后指正。教师指正:诗人为我们呈现了一幅清新明丽、温润丰美的人间四月天图景。和煦的微风在春光里飞舞,黄昏的云烟弥漫,繁星在夜空闪烁,细雨洒落在花前,百花鲜艳、婀娜,夜夜的月光皎洁明净,草是鹅黄的,芽是嫩绿的,莲是洁白的,繁花一树树绽放,春燕一双双呢喃。四、课堂小结1.这首诗歌我们已经学习完了,下面请同学们概括归纳一下主题。教师:要求一至两名学生归纳,最后教师指正。预设:这首抒情诗中,诗人使用了描写和抒情的表达方式,极力抒写“你”是“人间的四月天”,表达了对爱的热烈歌颂。2.分析明晰本诗写法,体会写作特色。(教师讲解,学生记录)
整个的螳螂巢,大概可以分成三个部分。其中的一部分是由一种小片做成的,并且排列成双行,前后相互覆盖着,就好像屋顶上的瓦片一样。这种小片的边沿,有两行缺口,是用来做门路的。在小螳螂孵化的时候,就是从这个地方跑出来的。至于其他部分的墙壁,全都是不能穿过的。螳螂的卵在巢穴里面堆积成好几层。其中每一层,卵的头都是向着门口的。前面我已经提到过了,那道门有两行,分成左、右两边。所以,在这些幼虫中,有一半是从左边的门出来的,其余的则从右边的门出来。阅读感悟:作者介绍螳螂的巢时不仅对它们用的材料进行了说明,还对这两种材料做了进一步分析,而且对整个巢的构造做了详细的说明。这些正好体现出作者观察仔细、认真,乐于探究的精神。(2)法布尔科学实验的方法。综合上面两个片段,法布尔在研究昆虫时,经常采用的是观察法和实验法。课件出示:观察法可以直接用肉眼,也可以借助放大镜、显微镜等仪器,或利用照相机、录像机、摄像机等工具,有时还需要测量。
1、以备课组为中心开展教学研究活动,加强教师间的交流与合作,共同努力,共同提高。充分发挥各年级备课组的作用,做到每周定时、定地点团体备课一次,执行签到制度。备课有计划,有资料,有中心发言人。备课组讨论教材,切磋教法,研究学法,探讨教学重、难点,及时解决教学中遇到的的问题等,做好记录,使备课组活动真正落到实处。
【教学提示】题目的设计意图是要培养同学们患难与共的爱心,克服困难的勇气和决心。目标导学二:分析环境和心理描写1.文章开头为什么突出“酷热”?明确:开头一自然段主要写孩子们为什么想到去爬悬崖。写天气的酷热,通过环境描写,突出了人物的心理,即酷热使人烦躁,小伙伴就厌倦了正在玩的游戏,从而想到很久没有爬悬崖。2.“时间在慢慢地过去。影子在慢慢拉长,太阳已经没在西边低矮的树梢下,夜幕开始降临。”“暮色中,第一颗星星出现在天空中,悬崖下面的地面开始变得模糊。”这两句话是什么描写?请简要分析其作用。明确:这是典型的环境描写,很好地烘托了“我”的恐惧心理。3.当“我”被弃于悬崖时,“我”的心理状态是怎样的?请从文中找出描写“我”处于险境中的心理状态的词句。明确:“我”的心理状态是恐惧。词语:阵阵晕眩、天旋地转、神情恍惚。句子:“我听见有人在哭泣、呻吟;我想知道那是谁,最后才意识到那就是我。”“我趴在岩石上,神情恍惚,害怕和疲劳已经让我麻木。”
目标导学三:理解课文,把握内涵1.作者为什么把追求爱情作为活着的第一条理由?明确:作者说,追求爱情,有三方面的原因:第一,爱情可以带来狂喜;第二,爱情可以解除孤寂;第三,爱情的结合可以使人看到想象的仙境的神秘缩影。总之,爱情使人生活得更加美好;追求爱情,则是追求人生的境界。在这里,作者把爱情描写得极其美好,闪耀着人性的光辉。2.作者为什么追求知识?你能说说知识给你带来了什么吗?明确:一是可以了解人的心灵;二是可以了解星辰为什么发光;三是能够理解毕达哥拉斯的思想威力。这三方面实际上包含了人类知识的几个重要方面:人类、自然和社会。事实上,我们学习的知识,是人类在对世界的好奇心驱使下的创造,它给我们带来的不仅有解开世界之谜的快乐,还有思考过程本身的快乐。
【设计亮点】这是一篇自读课文,依据统编教材“教读—自读—课外阅读”的“三位一体”的阅读教学体系的特点和单元整体教学要求,我将本课设计为自读指导课型。我以学生自我阅读实践为主线,设计了四个循序渐进的学生阅读实践活动:初读,激发学生的阅读兴趣,了解学生的阅读认知水平;速读,落实单元能力目标,初步体会神话大胆的想象以及离奇而又合情合理的情节,初步感知女娲的形象;美读,深入品悟女娲形象,进一步体会课文想象奇特而又合情合理的特点;联读,激活学生思维,引导学生深入开展阅读实践活动,深入理解课文中丰富的想象是根植于现实的,而且是合情合理的。通过“四步”阅读,引导学生逐步自求自得,使教读课所学知识、方法和能力得到有效的迁移和拓展。最后,通过布置作业板块将阅读引向课外,实现课内外的有机勾连。【资料链接】袁珂和《中国古代神话》
[疑难探究]风度、优雅与教养有怎样的关系?在社会交往中,一个人的谈吐是否得体,举止是否有度,怎样打扮才合适,综合决定一个人是否有风度,这也是教养的具体体现。有些人错误地认为优雅风度就是矫揉造作、忸怩作态和附庸风雅,作者认为这是因为这些人并没有理解风度和优雅的真正内涵——那就是“不应该妨碍他人的生活,要让大家都有良好的自我感觉”,在许多场合要注重礼仪,行为得当,“动作举止、衣装服饰、走路的步态,一切都要有分寸,力求优雅”。优雅的本质是“社会共享的”,而不仅仅是“徒有其表的举止”。作者认为,“敬重社会,珍惜大自然,甚至珍惜动物,珍惜花草树木,珍惜当地的美丽风光,珍惜你居住地的历史,等等”,以敬重的态度对待他人、环境,再加以得体的言行举止和随机应变的智慧,一个人就能够成为有风度而又优雅的人。简而言之,风度和优雅的底色就是教养,是心灵世界真善美的折射。文章就此展开的论述层层推进,解释了风度和优雅源于教养,教养的核心就是敬重、珍惜和爱,做有教养的人应是我们追求的目标。总之,教养修之于内,风度形之于外。
子夏求“仁”的途径是“博学”“笃志”“切问”“近思”,就是广泛学习,坚定志向,提出疑惑,联系实际思考自我。(2)从孔子及其弟子的“修身之道”里,你懂得了什么道理呢?(生交流明确)预设 进德修身是一个循序渐进的过程。道德的修炼需要自我学习,自我反省。自我反省能把外在的道德约束内化为对自己的自觉要求。当思想与言行统一,能自觉遵守道德规范时,就达到了极高的道德境界。(3)“品德是最高的学位。”明白了这些道理,你准备怎样开启自己的修身之路呢?(生联系自身实际,各抒己见)预设 坚定志向,加强学习,加强自我反省,等等。【设计意图】这一教学板块,精心整合了教学内容,细致地安排了学生的学习活动,引导学生以吟诵、品议的方式逐步理解经典的思想核心,让学生成为课堂有序学习活动的主体,使其在活动中启迪思维,涵养心灵,得到传统文化的熏陶。
【设计亮点】这是两篇自读文章,我们首先要明确统编教材“教读课文”“自读课文”“课外阅读”“三位一体”的阅读体系,其次要明确教读和自读的区别。教读是教师引导,运用一定的阅读策略和阅读方法,完成阅读任务,达成阅读目标的一种阅读学习,目的是学“法”。自读课以学生自主阅读实践为主线,是学生运用在教读中获得的阅读经验,自主阅读,强化阅读方法,沉淀为能力,目的是用“法”。所以自读课文重在“导”,引导学生方法迁移、问题探究、多维批注、比较阅读;引导学生用好旁批,启发阅读,写好旁批,提高阅读质量;引导学生用好阅读提示,自主阅读、独立阅读,并尽可能向课外阅读延伸,培养阅读兴趣和习惯。所以自读课是联结课内与课外的重要纽带,是实现学生素养提升的关键环节。【名家点评】1.一代代的青年读到冰心的书,懂得了爱:爱星星、爱大海、爱祖国,爱一切美好的事物。我希望年轻人都读一点冰心的书,都有一颗真诚的爱心。(巴金)2.一颗善良美丽的星辰陨落了,而她的光芒,将永远留在几代人的心里……(魏巍)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。