一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、活动目标通过动手操作,使幼儿初步感知杠杆省力的原理,激发幼儿探究的兴趣,培养幼儿分析问题和解决问题的能力。三、适用对象5~6岁幼儿。四、活动所需资源动物头饰、木棒、积木、重物、记录卡、水彩笔、浆糊、抹布、用力标志(大小不等的圆片)。五、活动过程导语:小熊要盖新房子,它买了许多材料,有些材料很重,它搬不动,我们去帮助它吧!说一说,用什么办法来运材料。
【说目标】教学目标1.正确读记“尝试、火焰、捆绑、身躯、探索、惨重、穿越、振奋、规模、协作、嫦娥奔月、炎黄子孙”等词语。2.默读课文,抓住课文的主要内容,了解中国航天事业的发展历程和千年梦圆的经过,激发民族自豪感。3.学习在具体的事实描述中说明道理的写法,体会中国航天人团结合作、默默奉献、勇于探索、锲而不舍的科学精神。教学重难点1.了解中国航天事业最终实现梦想的原因,从中体会中国航天人所体现的团结合作、 默默奉献、 勇于探索、锲而不舍的科学精神, 激发学生的民族自豪感。2.学习在事实的描述中说明道理的写法。这篇课文激情澎湃,字里行间充满了中国人民实现飞天梦想的自豪与骄傲。教学这一课,我注重引导学生用朗读从字里行间品味自豪和骄傲的感情。
一、本节课的设计理念: 课题中的“发现”一词是本文的文眼,教学中引导学生从课题入手提出疑问,然后进行梳理明确主要学习任务。学生自主学习,了解“我”发现了什么,重点了解“我”是怎么发现的,理清作者童年时发现胚胎发育规律的过程。二、教材分析:本课是一篇鼓励求知、鼓励大胆想象、鼓励探究发现的课文,通过作者回忆童年时发现胚胎发育规律这件趣事,反映了儿童求知若渴的心理特点和惊人的想象力。第一部分先概述了“我”九岁时发现了有关胚胎发育的规律,却在后来因此受到惩罚。第二部分具体叙述“我”发现有关胚胎发育规律的前后经过。最后,写这个发现在几年后老师讲课时得到证实,“我”情不自禁地笑出了声,结果被老师误解受到处罚,但“我”从中获得感悟。本文故事情节充满童真童趣,语言风趣幽默,并有多处内心活动的描写,真实展现了孩子内心世界。
一、说教材《童年的水墨画》是统编小学语文三年级下册第六单元的一篇精读课文,本文是一组儿童诗,由诗人张继楼的《溪边》《江上》《林中》三首小诗组成,以跳跃的镜头捕捉了乡村儿童的典型生活场景,展现了儿童生活的丰富多彩以及无穷趣味。 《溪边》一诗生动形象地描绘了儿童垂钓的场景。诗歌先描绘平静的溪水把人影染“绿”,再写水面钓竿上立着一只“红”蜻蜓,这一“绿”一“红”,既是和谐唯美的相互映衬,又是恰到好处的点缀,使画面充满了色彩美感;接下来,描绘了静静的溪水映着柳树、钓鱼孩子的倒影、钓鱼竿、红蜻蜓,空气都仿佛停止了流动,直到鱼儿上钩的一刹那,溪水动了,人影碎了,鱼跃人欢,画面顿时变得生机盎然。这一静一动的结合,是本诗的微妙高明之处。 《江上》描摹了一群水乡孩子江中嬉戏的欢乐场面。一群戏水的孩子,那样的调皮,像鸭群一样钻入水中,接下来“一阵水花”与“两排银牙”,将童年的烂漫快乐渲染得淋漓尽致,鲜活的画面仿佛定格在我们的脑海之中。
客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.
2、探索根据实物图的内容选择答案图,并列出8的第一、二组加减算试。3、用较准确、完整的语言讲述算式的含意。教学准备:教具:图片:8的第一组实物图七张、第二组实物图五张。学具:幼儿用书、铅笔若干。操作材料若干(7以内的加减算式和8的第一、二组加减算试。)活动过程:一、集体活动。1、复习8的组成——玩碰球游戏。2、学习8的第一组加减。
活动目标: 1.运用化学小魔术,充分激发幼儿的探究兴趣和积极尝试的欲望。 2.通过游戏活动,使幼儿了解酚酞溶液遇到另一种药水(稀碱溶液)会变成红色的现象,真切地感受到大自然的奇妙。 活动准备: 1.稀碱溶液、酚酞溶液、清水。 2.毛笔、杯子、双面胶; 3.水彩纸数张,教师示范画一张(事先均用彩笔画好树林、房屋等,用毛笔蘸取稀碱溶液画狐狸、老虎、大灰狼隐藏在树林中,晾干),白纸数张(事先用稀碱溶液画上小动物,晾干)。 活动过程: 一、教师做化学小魔术,激发幼儿兴趣。 1.教师出示一张已用稀碱画了小动物的白纸,问:“纸上有什么?”“有小动物隐身在白纸里,可以用什么办法把它请出来?”(幼儿自由畅想)。 2.教师演示: 提问:“老师用什么方法把毛毛虫请了出来?” 3.引导幼儿对水和酚酞进行比较(用试一试、看一看、闻一闻的方法) 教师小结:刚才老师请毛毛虫用的不是水,而是一杯神奇的药水,它的名字叫酚酞。
1.看过了视频,接下来由各个小组与我们分享他们在课下准备的核心价值观小品,每组表演时,剩下的小组猜测表演的是哪一个核心价值观并在活动评价单上进行评分。2.教师总结:“精神文明建设使人们的生活更美好”教师引导学生:精神文明建设搞好了,人心凝聚,精神振奋,各项事业才会全面兴盛。活动二:走进新时代,怀揣中国梦。1.播放“中国梦”优秀少儿演讲视频。2.阅读课本,交流感想。活动三:争做时代好少年1.回顾各小组的表演,把其中所有的不良习惯和闪光举动逐个挑出来再次强调。2.小组交流班级内部常见的坏习惯。教师总结。总结延伸:通过本节课的学习了解到青少儿应积极投身于社会主义精神文明建设的伟大实践中去,做新时代的好少,做新时期中国先进文化的传播者。
1.做学问之前首先学会做人2.知识文化修养和思想道德修养的关系三.追求更高的思想道德目标㈤ 说教学评价和反思:1.这节课主要是以学生为主体,老师为主导,让学生充分发表自己的看法,把理论的知识结合在实际的日常生活中,鼓励学生充分发表自己的意见,能调动学生学习的积极性,达到教学目的。这节课学生讨论,发言的机会很多,但由于我校的学生的基础薄弱,在发言时难免偏离老师引导的方向,甚至出现毫不相干的说法,由于本人经验不够此时如何去引导他们可能做的还不够好。2.新课程的教学,如何突破书本知识的局限,延伸更深层次的内容是一个难题。本节课在知识的处理上,把道德的重要性与道德的层次两个知识点补充了进去,目的是让学生在学习之前有一个情感的铺垫,从而更好地达到教学目标。
②癌症患者在治疗过程中,会有很大的身体损耗,而黄鳝有很好的滋补作用,适当吃一点黄鳝,既能够为患者补充营养,也能够提高患者的身体免疫力。 (来源于报纸)经过讨论交流,每一组一名同学自主发言,老师点拨,最后形成小结。看来源 要权威发布,不要道听途说看内容 要事实清晰,不要模糊遗漏看立场 要客观公允,不要情绪煽动看逻辑 要严谨准确,不要简单断言情感判断 理性判断 理性表达(四)活动三,重实践新课标提到,语文课程应引导学生在真实的语言运用情境中,通过自主的语言实践活动,积累经验,把握规律,培养能力。据此,我设计了以下贴近学生生活、可参与性强的活动。多媒体展示案例,仍然是先讨论交流,再自主发言,说出案例有哪些问题。这是某校园论坛上的一则寻物启示。
一、指导思想 以学校总体工作计划为指导,以深入开展素质教育和创新教育为目标,围绕学校主题教育活动,提高学生的思想素质和科学文化素质、以爱国主义教育为主线,以学生的行为习惯的养成为主要内容,注意培养和提高学生的基本道德。规范班级日常管理工作,开展丰富而有意义的少先队活动,努力探索班级工作的新特色。
二.学情分析本次课的主体是七年级的学生——对学生的实际情况,学校情况,场地器材加以分析:本班16人,这个年龄段的学生活泼好动,思维活跃,想象力丰富,又比较自信,而他们的潜能需要老师来开发。怎样才能把学生的这种潜能充分挖掘出来呢?怎样才能把这堂课的内容上的灵活多变呢?又如何在有限的课堂时间里提高学生的练习参与度?这对我来说是一个新的挑战。
2、喜欢与同伴交流自己的生活经验,愿意在集体面前大胆说话。活动准备:《汽车城》活动课件一个活动指导:一、情境导入,引发兴趣孩子们和老师一起进行音乐游戏“开汽车”,创设“红绿灯”的游戏情境。二、游戏汽车城,了解车辆给生活带来的便捷1、汽车城里有些什么车?2、互动游戏——各种各样的车(一)(1)猜一猜,这是一辆什么车? (2)卡车可以帮助我们干什么呢? (3)情景:秋天到了,果园里的苹果都熟了,我们该怎么运回幼儿园呢?小结:原来卡车可以帮助我们运输各种各样的货物,真方便。
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。