二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
尊敬的老师,亲爱的同学们: 大家早上好!非常高兴我们又相聚在这美好的早晨。今天我在国旗下讲话的主题是:《文明礼仪,从我做起》。文明礼仪是我们中华民族的传统美德!文明礼仪在哪里?她就在我们平时的一言一行中。在学校里,我们要尊敬老师,见到老师、同学要问好;要爱护公物、爱护花草树木,保护环境。
这篇《国旗下的讲话演讲稿范文:文明礼仪伴我行》,是特地,希望对大家有所帮助!老师们、同学们:早上好!今天我讲的题目是《文明礼仪伴我行》。梁启超说过:“少年智则国智,少年强则国强。” 在这里我却要大声说:“少年文明,则国家昌盛。”在一个国家中个人是主体,对于个人来说什么最重要呢?我想首先应该是具备文明素质,只有当每一个人都具备了文明素质,那么这个国家的整体素质才能提高。曾看到这样一则报道,说的是新加坡,新加坡是一个通用英语的国家,这个国家的公共场所的各种标语大多是用英语书写。但其中的一些文明礼貌的标语,如“不准随地吐痰”、“禁止吸烟”、“不准进入草坪”等却用中文书写。为什么呢?人家回答:“因为有这些不文明行为的大多数是中国大陆的游客。”为此,到新加坡考察的一位中学校长语重心长地说:“不文明行为也是国耻!”。
这篇《国旗下的讲话演讲稿:文明是种无形的力量》,是特地,希望对大家有所帮助!敬爱的老师,亲爱的同学们:大家请看我手中的这张图片,你是否发现图中女孩的双手有什么不同?(向观众展示图片)是的,他的双手只有两个手指头!如果你只有两个手指,你会努力让自己和同龄人一样生活吗?如果你只有两个手指,你是否坚信自己的生命仍然可以圆满?图中的女孩,却用这样一双只有两个手指的右手,做了一件感动中国的事情。她叫潘娜威,辽宁营口市一名普通的学生,她用着两个指头见了无数的废旧电池。有的时候,小娜威捡废电池,周围小孩子看见跟着学,有的孩子父母看见了,就特别不高兴地喊,多脏啊,捡哪个干嘛?小娜威一点也不客气地回敬说:“手脏了可以洗,地球脏了怎么洗?”
以下是《关于国旗下讲话稿:文明是种无形的力量》的文章,供大家参考关于国旗下讲话稿:文明是种无形的力量敬爱的老师,亲爱的同学们:大家请看我手中的这张图片,你是否发现图中女孩的双手有什么不同?(向观众展示图片)是的,他的双手只有两个手指头!如果你只有两个手指,你会努力让自己和同龄人一样生活吗?如果你只有两个手指,你是否坚信自己的生命仍然可以圆满?图中的女孩,却用这样一双只有两个手指的右手,做了一件感动中国的事情。她叫潘娜威,辽宁营口市一名普通的学生,她用着两个指头见了无数的废旧电池。有的时候,小娜威捡废电池,周围小孩子看见跟着学,有的孩子父母看见了,就特别不高兴地喊,多脏啊,捡哪个干嘛?小娜威一点也不客气地回敬说:“手脏了可以洗,地球脏了怎么洗?”
在校园里有些学生在楼道上跑跳嬉戏,打闹喧哗,虽经学生会和老师多次提醒也未见成效。其实,类似的情况之前就曾多次发生过,比如去饭堂时跑步、自习课随意讨论问题、宿舍内乱吼乱叫等,尽管学校常规已作了明文规定,班主任也一再要求,但总是收效不明显,或是经提醒有好转,过一段时间又恢复原态。这是为什么呢?究其根源,我认为,主要在于同学们没有真正从内心认识到文明素养的重要性。的确,在我们的周围,在我们生活的大环境里,随地吐痰、出口脏话、擅闯红灯等不文明的行为屡见不鲜;在我们的人际交往中,懂得使用表示敬意的雅语和举止的人已经日渐稀少。但是作为我们国华的学生,将来要成为社会的精英人才,我们就不能随波逐流,因此今天有必要重提文明礼仪这个话题。什么是文明礼仪?简单地说就是律己、敬人的一种行为规范,是表现对他人尊重和理解的过程和手段。行为礼仪是外在的表现,而思想修养才是真正的内核,它不仅反应个人素质教养,也能体现个人道德和社会公德。
一、公路工程施工监理合同通用条件第1条“定义与解释”,适用于《公路工程施工监理合同》中的全部文件,即:协议书、通用条件、专用条件、附件A、附件B、附件C以及其它补充文件或附件。二、协议书由系列文件组成,其中的其它文件和其它附件是指签约双方一致同意增加列入监理合同的文件或附件,签约时必须在协议书中具体写明。协议书所包括的文件之间如果出现矛盾,按监理合同通用条件第1.2.3条的规定,按时间顺序以最后编写或双方最后确认的文件为准。而与该文件在协议书中的排列顺序无关。三、签约双方在监理合同专用条件第6.2.1条和监理合同附件C中,约定业主问监理单位支付监理服务费用的期限和方式;在监理合同附件B中约定业主向监理单位提供工作条件的期限和种类。四、签约双方在监理合同附件A中,约定监理单位提供监理服务的形式、范围与内容;在监理会同专用条件第5.2条中,约定监理单位提供监理服务的时间和有关期限。
二、要严格公正地对待学生 教师要严格公正地对待学生。教师热爱学生与对学生的严格要求是一致的。只有在德、智、体、美、劳等方面严格地要求学生,才能真正地关心、爱护学生。“爱之愈深,责之愈严”,学生是懂得这个道理的。他们喜欢的是亲切而又严格的教师。当然,严格要求包括师生两个方面,是教师和学生的共同标准。严格要求由教师提出,必须从教师做起,这样才能真正起到作用。不仅如此,教师还必须公正地、一视同仁地对待所有的学生,特别要注意不能厌恶学习成绩差的、有些缺点或顶撞过自己的学生。
很多贫困地区,贫穷和落后与人才的匮乏和短缺不无关系。贫困地区,受限于诸多的客观条件,人才,特别是大学生难以在一些贫困的农村施展才能。更为重要的是,由于贫穷,导致对于很多乡村在人才的政策和引入上也很缺乏甚至没有底气和勇气。对于大学生的引才工作政策上的缺失,直接就造成了很多偏远农村人才缺乏,而大城市往往有显得人才过剩甚至饱和。这就是长期以来困扰很多偏远农村发展的重要障碍。因此,加强人才工作,让大学生不断在乡村振兴上助力,往往就能破解很多乡村振兴发展的问题。 新时代,是知识经济时代。尊重知识、尊重人才早已深入人心。很多经济发达的地区,之所以能够保持快速、持久地高质量发展,人才的重要作用不言而喻。没有大量具有能力和高素质的大学生不断助力当地发展,经济想要实现突飞猛进难以为继。因此,破解偏远农村发展的瓶颈,就要不断发挥大学生的作用,让大学生助力实现乡村振兴。
二、要严格公正地对待学生 教师要严格公正地对待学生。教师热爱学生与对学生的严格要求是一致的。只有在德、智、体、美、劳等方面严格地要求学生,才能真正地关心、爱护学生。“爱之愈深,责之愈严”,学生是懂得这个道理的。他们喜欢的是亲切而又严格的教师。当然,严格要求包括师生两个方面,是教师和学生的共同标准。严格要求由教师提出,必须从教师做起,这样才能真正起到作用。不仅如此,教师还必须公正地、一视同仁地对待所有的学生,特别要注意不能厌恶学习成绩差的、有些缺点或顶撞过自己的学生。
很多贫困地区,贫穷和落后与人才的匮乏和短缺不无关系。贫困地区,受限于诸多的客观条件,人才,特别是大学生难以在一些贫困的农村施展才能。更为重要的是,由于贫穷,导致对于很多乡村在人才的政策和引入上也很缺乏甚至没有底气和勇气。对于大学生的引才工作政策上的缺失,直接就造成了很多偏远农村人才缺乏,而大城市往往有显得人才过剩甚至饱和。这就是长期以来困扰很多偏远农村发展的重要障碍。因此,加强人才工作,让大学生不断在乡村振兴上助力,往往就能破解很多乡村振兴发展的问题。 新时代,是知识经济时代。尊重知识、尊重人才早已深入人心。很多经济发达的地区,之所以能够保持快速、持久地高质量发展,人才的重要作用不言而喻。没有大量具有能力和高素质的大学生不断助力当地发展,经济想要实现突飞猛进难以为继。因此,破解偏远农村发展的瓶颈,就要不断发挥大学生的作用,让大学生助力实现乡村振兴。
一、基础扎实,视野开阔,才能够获得好的新闻角度 在今年的日常工作中,我对本市各大媒体的经济栏目都进行了细致的分析,摸准了我所跑银行的定位,同时我也意识到:我必需努力学习,争取能够以一名专业人士的视角来审视新闻。 厚积才能薄发,我通过业余时间恶补专业课程,同时阅读大量专业性报纸,观察优秀记者独特的视角、新闻切入点,同时认真阅读经济部同事的新闻报道。通过一段时间的观察,我认识到:好的经济记者必须具备举一反三,触类旁通的能力;必须具有充足的知识储备(新闻的敏感性是建立在广泛的知识储备的基础上的)。为了尽快达到这个目标,我做了大量的工作。 第一,我坚持收看中央电视台、x电视台的经济节目,从中了解金融基础知识和重点热点经济问题。 第二,我努力做一个有心人,注意身边人们谈论各类话题中有价值的东西,以备不时之需。记得在去年年初,我作为一个新记者,工作初期开展银行的新闻采写异常艰难,我通过阅读和观察,找到了一些颇具特色的新闻点,完成了20**年年初的一些理财稿件。
一、“准确、快速、灵活”的意义及其关系。 “准确”是篮球运动中的一个突出矛盾,通常在比赛中因传球准确性差造成很多失误,或因投篮不准带来比赛的失败。篮球比赛本身攻守双方一切技术、战术的应用和对抗的焦点就是围绕解决能否干扰对方的一切行动的准确性并争取自己尽量多把球投入对方篮圈,因此,不难看出“准确”的重要。 快速”的目的是为了出其不意,攻其不备,可以造成以多打少;“灵活”是随机应变,克服不利条件,争取有利局势,没有“快”就没有“灵活”,“快”与“灵”为“准确”创造条件,保证“准确”的发挥,“快”与“活”是手段,“准确”是目的,反之,“准确”的动作缩短了时间,争取了速度,“准确”的投篮又逼使对方扩大防区,而对方防区的扩大,更有利发挥“灵活”和“快速”的特长。由此可见,“准确”是三者核心,应占首位。 二、在篮球队训练中的运用 我一直担任校男篮教练工作,通过几年来的实践,我在训练比赛中注意贯彻“准确、快速、灵活”这一指导思想,取得了显著的成绩。我校男篮在参加市级比赛中,多年保持前几名的地位。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。