(1)填写表格中次品的概率.(2)从这批西装中任选一套是次品的概率是多少?(3)若要销售这批西装2000件,为了方便购买次品西装的顾客前来调换,至少应该进多少件西装?六、课堂小结:尽管随机事件在每次实验中发生与否具有不确定性,但只要保持实验条件不变,那么这一事件出现的频率就会随着实验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值。七、作业:课后练习补充:一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球与10的比值,再把球放回袋中摇匀。不断重复上述过程5次,得到的白求数与10的比值分别为:0.4,0.1,0.2,0.1,0.2。根据上述数据,小亮可估计口袋中大约有 48 个黑球。
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
新冠无情、人有情。在突如其来的疫情面前,我们没有退缩,而是勇敢面对困难;我们没有恐慌而乱,而是团结一致;我们没有自私,而是肩负责任;我们没有添乱,而是严格遵守国家规定。我们坚信,在国家的领导下,在我们的坚定信念下,我们必定可以打赢这场没有硝烟的战争!团结就是力量,这就是中华民族的传统美德,这就是和我们胜利的武器。新冠疫情反反复复,从没远离,我们要有常态化的预防心理,不能侥幸大意。近段时间,我国不少地方又有疫情反弹的景象,这又给我们每个人带来了新的挑战,因此,我们要强化疫情防控意识,阻止疫情通过校园传播扩散,保障校园、家庭和学生健康安全。
二、活动背景:新冠无情、人有情。在突如其来的疫情面前,我们没有退缩,而是勇敢面对困难;我们没有恐慌而乱,而是团结一致;我们没有自私,而是肩负责任;我们没有添乱,而是严格遵守国家规定。我们坚信,在国家的领导下,在我们的坚定信念下,我们必定可以打赢这场没有硝烟的战争!团结就是力量,这就是中华民族的传统美德,这就是和我们胜利的武器。
三、班会目标:1、通过本次主题班会活动,进一步引导学生树立理想目标,从小做好准备,立志学榜样,长大做榜样,从小学先锋,长大做先锋,勇敢成长为担当民族复兴大任的时代新人!2、通过本次主题班会活动,进一步引导学生把握学习机会,珍惜学习机会,刻苦学习,做一个德智体美劳全面发展的好学生。
1.引导幼儿认识班级标志。 教师带幼儿来到活动室门口,问:你们知道这是谁的家吗?引导幼儿观察教室门上贴的苹果标记,告诉幼儿贴着苹果标记的就是我们班小朋友的家。 教师操纵小动物手偶,以小动物的口吻说:欢迎小朋友们每天到这里和我一起做游戏,这是我们的新家,你们喜欢吗? 2.参观新家。 带两位教师一个当火车头,一个当火车尾,带幼儿模仿开火车的动作走进活动室。 教师带领幼儿模仿开火车围绕各个活动区行走,在沿途的每一个区域停留,教师介绍该区域的玩具。 继续以开火车的形式参观盥洗室、厕所、睡眠室、饮水桶等。
活动目标: 1、乐于为集体服务,萌发做值日生的自豪感。 2、了解值日生应该做那些事情。 3、掌握收拾、整理的基本技能,养成做事细致、有条理地好习惯。 活动准备: 1、搜集幼儿在一日生活中帮着收拾整理、玩具、图书、桌椅、摆放碗筷、扫地等有关值日生工作方面的照片。
活动目标: 1、让幼儿了解一些基本的道路安全知识。 2、在观察讨论的活动中掌握遵守交通规则的具体行为方式,提高交通安全意识。 3、在游戏活动中体验交通规则的重要性,养成自觉遵守交通规则的好习惯,提高自我安全防护能力。 活动准备: 幼儿交通安全宣传片《上学路上》;交通安全标志图片,信号灯卡片;布置场地:路口、人行横道。
1.手指游戏,稳定幼儿情绪。"小朋友们伸出小手,跟叔叔一起玩个手指游戏好不好?" 2.谈话,引入主题。 "小朋友们知道怎样过马路吗?过马路时应该注意些什么?"(幼儿讨论) 3.出示图片,提高幼儿兴趣。 "我们小班小朋友太乖了,叔叔让你们看以些图片好不好?想不想看?小朋友们把小眼睛闭上,叔叔把小图 片请出来,3,2,1,好了,睁开小眼睛。 "这是什么呀?(红绿灯)小朋友们见过吗?小朋友们跟爸爸妈妈上街的时候有没有见过?"(幼儿讨论)
一.自信的重要性(板书)自信是成功的第一秘诀──爱默生(板书)举例说明:a.居里夫人凭着对自己科学假设的坚定信念,在艰苦的条件下从几吨沥青中提炼出一克的镭。b.爱迪生在寻找一种材料做电灯丝时,曾千百次失败,被人讥笑,如果他不是对自己充满信心,就不可能坚持实验。c.98世界杯外围赛亚洲区十强赛中,中国队由于缺乏自信导致“进军世界”的梦想再次粉碎,而卡塔尔队处于四战只得一分的劣势之下依然有争强斗胜的心,毅然换了教练,对队伍稍作调整后就取得了三连胜的辉煌战绩。中卡两队鲜明对比再次验证自信的重要性。
1.知道粮食与人民生活、国家建设有密切关系,用处很大。 2.知道粮食来之不易。 3.懂得要爱惜粮食。 情感: 1.对粮食有爱惜的感情。 行为: 1.爱惜粮食、爱惜食物,不浪费。 2.爱护庄稼,不践踏。 教学重点:让学生知道粮食来之不易 教学难点:使学生懂得如何爱惜粮食。
1、出示洗手程序图卡,或播放《洗手的正确程序》视频短片,和幼儿共同描述并练习洗手的正确方法。 2、将洗手程序图卡打乱,请小组长协助老师将图卡排好。 3、其他幼儿做出在活动2设计的动作,感谢小组长。 4、播放轻快的《洗手歌》音乐,幼儿随着音乐模仿图卡的步骤洗手。 5、小组长带领小朋友到卫生间洗手,老师加以引导。 6、洗完手后,小组长检查小朋友的手是否干净,并发给小贴画作奖励
二、播放一段“5.12“汶川大地震的录象,采用触目惊心的地震情景引入课题。三、围绕录像与幼儿展开讨论,学习逃生技巧。1.摇晃时立即关火,失火时立即灭火。2.不要慌张地向户外跑。3.将门打开,确保出口。4.户外的场合,要保护好头部,避开危险之处。5.在百货公司、剧场时依工作人员的指示行动。6.汽车靠路边停车,管制区域禁止行驶。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。