1. 小明的脚长23.6厘米,鞋号应是 号。2.小亮的脚长25.1厘米,鞋号应是 号。3.小王选了25号鞋,那么他的脚长约是大于等于 厘米且小于 厘米。小结:刚才同学们都体会到了分组编码使原来繁多,无叙的数据简化、有序。因此分组、编码是整理数据的一种重要的方法,在工商业、科研等活动中有广泛的应用(四)反馈练习课内练习以下是某校七年级南,女生各10名右眼裸视的检测结果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)这组数据是用什么方法获得的?(2)学生右眼视力跟性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?(五). 归纳小结,体味数学快乐通过本节课的学习,你有那些收获?(课堂小结交给学生)数据收集的方法:直接观察、测量、调查、实验、查阅文献资料、使用互连网等。整理数据的方法:分类、排序、分组编码等。(学生可能还会指出鞋码和脚长之间的关系等)
方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】 逆用幂的乘方结合方程思想求值已知221=8y+1,9y=3x-9,则代数式13x+12y的值为________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,则21=3(y+1),2y=x-9,解得x=21,y=6,故代数式13x+12y=7+3=10.故答案为10.方法总结:根据幂的乘方的逆运算进行转化得到x和y的方程组,求出x、y,再计算代数式.三、板书设计1.幂的乘方法则:幂的乘方,底数不变,指数相乘.即(am)n=amn(m,n都是正整数).2.幂的乘方的运用幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则
解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
基本部分: 1、请幼儿用手摸自己的喉咙,然后分别大声和小声说话看看有什么感觉吗?(多找一些幼儿说出他们的感受)师幼总结:大声说话,喉咙震动的就大,小声说话,喉咙震动的就小。 2、请幼儿用勺子敲敲瓷碗里面的水,分别轻轻敲,用力敲,看看用什么发现吗?幼儿回答完后师幼一起总结:轻轻敲碗,发出的声音小,碗里的水动的小;用力敲碗,发出的声音大,碗里的水动的也大。 师总结:哦,原来振动产生了声音,我们便听到了声音。 3、做律动“科学泡泡”调动幼儿情绪。 教师放电话铃声,然后接电话。(两个纸杯做的电话)教师装出很神秘的感觉,提高幼儿的兴趣。 a教师将范例电话发给幼儿让他们观察它的做法。然后把做电话的材料发给幼儿让他们和自己的好朋友一起合作制作一个电话。
活动目标:1、巩固对正方形的认识,了解平面图形和立体的区别。2、初步感知正方体,知道其名称和最显著地特征。活动准备:圣诞老人、大、小包装盒(人手一个)、正方形卡片、剪刀、彩笔(人手一个)、各种装饰材料(皱纹纸、亮光纸、卡纸等)。活动重难点: 重点:初步感知正方体,知道其名称和最显著地特征。难点:了解平面图形和立体的区别。活动过程:一、导入部分:出示圣诞老人,引起幼儿兴趣。师:圣诞节快到了,圣诞老人给小朋友们送来了礼物,我们一起来看看是什么吧?(出示包装盒)好漂亮的礼物盒,里面会是什么呢?打开看看圣诞老人为什么要送我们这些礼物呢?它想让小朋友探索一下这些包装盒有什么秘密?
活动准备:1、笔、和表格人手一份。 2、猴子的手偶一个。 3、多媒体课件。 4、小红旗人手一面。活动流程: 猴子求救——幼儿帮助猴子找家——进行环保教育,同时介绍猴岛及一些美丽的海南风光——讨论——当个环保小卫士。 活动过程: (一)开始部分: 一、猴子求救 1、“孩子们,你们看猴子哭了!”2、让孩子们看: 猴子哭着说 “我没有家了,请大家帮帮我好吗?” 二、幼儿帮助猴子找家 1、“猴子为什么没有家呢?”让孩子们讨论 2、“你们能不能帮助猴子呢?”3、“那好,请你们把想出来的办法用标记记录出来,看谁的办法最多。”4、让孩子们分组画标记,想办法帮助猴子。
活动目标1、萌发探索人体的兴趣。 2、在观察和操作中,初步了解皮肤的构造和功能,提高观察能力和触觉感受力。 3、知道要注意保持皮肤的清洁,并使皮肤不受到损伤。活动准备 1 幼儿已认识过人体的某些器官 2 操作材料:冷水、热水、夹子、羽毛、石子、玻璃球、绒毛玩具、木块、放大镜、印泥、白纸、记号笔。 活动过程1 幼儿互相找身上的皮肤,知道皮肤的重要性。 1)小朋友,你们觉得人体中什么器官最重要?注:在幼儿已认识了人体一些器官的基础上,我请幼儿自由发表意见:人体哪种器官最重要?其目的在于复习以前学过的有关人体器官的知识,同时也促使幼儿多角度地去思考问题,促进幼儿的思维活动。 2)请小朋友互相找一找身上哪些地方有皮肤。(幼儿观察议论,得出人的身体上每个地方都有皮肤。) 注:好奇心是幼儿学习的内驱力和学习获得成功的先决条件。在幼儿看来,这是很好玩、有趣的一件事,它唤起了幼儿强烈的好奇心,正是在这种好奇心的驱使下,使幼儿能专心致志地去寻找、去观察。3)皮肤是我们人体最大的器官,那我们如果没有皮肤会怎么样?注:如果我们没有皮肤会怎么样?孩子们充分发挥了他们的想象力。有的说:没有皮肤,血都流出来了;有的说;没有皮肤,我们会死的;有的说:没有皮肤,人会变得很难看……他们善于思考、积极表达,这种良好的学习品质是非常难得的。小结:皮肤就象我们的外衣一样,人身上不能没有它。
活动目标:1、通过交流展示各种工具,初步感受工具的种类很多。2、在观察操作尝试中感知工具的作用很大,发展综合能力。3、能积极参与活动,在活动中体验观察和探索的乐趣。 活动准备:1、课前幼儿收集各种工具。老师和幼儿到室外寻找特殊的工具。2、卷笔刀、削苹果机,刨子,开瓶器。以及相对应的辅助用品。 活动过程:一、尝试操作使用工具1、师:“前几天老师和大家一起收集了各种各样的工具,今天让我们就来试试这些工具,看看它们有什么用。” (幼儿分别操作工具,提醒幼儿注意安全)
教学过程:一、导入1、多媒体出示嘉兴手机城群众抢购手机的画面2、多媒体出示一群人在车上、家里谈论关于手机的话题3、投影出示关于手机广告的报纸 提问:小朋友,刚才我们看到一些录象、投影都与什么有关?你对手机熟悉吗?你对手机又知道些什么?·小组讨论。·集体交流。------让幼儿畅所欲言。把对手机的一些了解由教师汇总(用表格形式)
二、活动准备:1、提供给幼儿介绍太空的资料:图书、录像、电脑。2、设计好的大幅“未来太空城”的图片。 3、各种大型积木,橡皮泥,彩纸,皱纸,各种废旧材料等。4、录音机、磁带。 三、活动过程: 1、感知太空。 (1)教师扮演星姐姐:“小朋友们好,我是宇宙太空的星姐姐,我知道你们很想知道我住的地方到底是什么样的,所以,今天我就邀请你们到太空去做客,你们高兴吗?那我们怎么去呢?(坐飞船、航天飞机等) (2)幼儿随音乐一起做律动“坐飞船”,然后自由地围坐在一起。 (3)查看关于介绍太空的资料,激发幼儿学习兴趣。 “现在,我们来到太空资料厅,请你们自己去查看关于太空的介绍,好吗?幼儿自由选择,借助各种媒体感知太空的奥秘。
【活动准备】 1、不同形态的动物或人物的剪影。 2、自制幻灯箱一个,即手电筒,卡通外形的硬纸箱,透光纸组成的"小精灵"。 3、自制幻灯片两张,美术书一本。 4、小橡皮,黑布一块。【活动过程】 导入:老师今天带来一位新朋友,它的名字叫"小精灵",我们来认识一下他好吗?(出示灯箱)谁来说一说"小精灵"都有哪些特点? 一:光影揭秘 1、在"小精灵"的肚子里有你们想吃的、想看的和想玩的,你们相信吗?不过里面还有一个非常可怕的怪物,谁能勇敢的走上来看一看?(请一名幼儿参与)请你把小手放在"小精灵"的身上说:"我会遵守诺言,不会把所看到的东西告诉小朋友们"(请这名幼儿观看)。 2、提问:你看到了什么动物?你看到了什么物体?(边提问边看)你看到了哪些人物? 3、请一名小朋友揭示"小精灵"的奥秘。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。