一、导入师:今天看见一道题把老师给难住了,想大家帮帮忙,同学们愿不愿意啊?生:愿意师:出示课件(看图猜成语) 生:画蛇添足、虎头蛇尾师:看来大家的语文基础还是很扎实了,谢谢大家的帮忙。大家有没有发现刚才的两个成语有一个共同点是什么?谁能告诉老师今年是什么年?去年是什么年?明年又是什么年?生:蛇年、龙年、马年师:请把你知道的生肖年勇敢、大胆、完整的告诉大家 生:略师:今天就让我们一起走进“十二生肖”的国度。 出示课件《十二生肖》
2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.
2、从周围生活中发现多种有趣的数字,初步了解数字在生活中的实际意义。 活动准备: 1、幼儿收集的有数字的物品; 2、电脑课件(打电话的情景) 3、英语儿歌 活动过程: 一、英语儿歌引出。 提问:说说这首儿歌里有哪些数字? 二、介绍生活中有数字的物品。 你收集的材料上有哪些数字,它们有什么作用? (在此进行提升幼儿对数字的认识,如:食品袋上的数字代表生产日期、保质期;药瓶上不仅有保质期,而且还有剂量等。我们生活中处处有数字,数字用处很大。它可以表示顺序、日期、时间等。如果没有数字,生活就会变得乱糟糟,甚至还会出事故呢!)。
2.激发幼儿参与数活动的兴趣,培养幼儿积极思维的能力。 活动准备:1、一定数量的卡通玩具。1—10的数字卡片若干。 2.自制小奖品和金钥匙若干。 活动过程:1、介绍“中奖游戏”。 (1)提问:“什么叫中奖?”老师解释,帮助卡通宝宝找朋友。如果帮它们都 找到了朋友(指都找到了一对一对卡通玩具),就算中奖,能得到奖品。 如果其中有一个卡通宝宝找不到朋友,则不能得到奖品,也就是没有中奖。 (2)讲解游戏规则。 每人请出若干数量卡通宝宝来做游戏。分成弟弟妹妹两队,进行比赛。提示幼儿可用已经玩过的非正式活动中“圈一圈”游戏的方法,来玩中奖游戏。 2.第一轮游戏将幼儿分成两队进行,理解双数和单数的意义。 (1)第一轮比赛结束后,引导幼儿讨论:他们能不能中奖?为什么?加深对游戏意义的理解。即:帮助卡通宝宝找到朋友,就能中奖,反之则不行。 (2)第二轮比赛后,引导幼儿讨论:为什么弟弟队(或妹妹队)总是能中奖?让幼儿知道游戏中“请多少数量的卡通宝宝”是能否中奖的关键。 小结归纳:遇到2、4、6、8、10的数量的卡通宝宝都能找到朋友,也就都中奖。遇到1、3、5、7、9的数量的卡通宝宝都会剩下一个找不到朋友,所以不能中奖。 (3)认识2、4、6、8、10是双数;1、3、5、7、9是单数。
活动准备: 1、森林背景图,6张蘑菇房子图片。 2、1-6的大点卡和数卡一套。 3、小猴、小兔头饰各一个和老虎的图片一张 4、幼儿数学操作板1个/人,1-6的点卡一套/人。 5、标有1—6的数字卡片,每个小朋友一张 6、故事《住宾馆》。 活动过程: 一、开始部分:初步理解“邻居”关系。 1、拍手游戏:“嘿嘿,ⅹⅹⅹ(小朋友名),我问你,你的朋友在哪里?”“嘿嘿嘿,在这里!”(被问的小朋友举起旁边小朋友的手。) 2、我们每个小朋友都有自己午休的小床,请你说一说自己的邻居都有谁,让幼儿理解什么是邻居。
活动准备:教具:大的点点比较图三张,方格纸,数字(1—9),符号“〈”“〉”。学具:“大嘴巴比多少”(2组12套),每个幼儿2张,每张作业上包括点点比较图和方格纸;符号“〈”“〉”;水彩笔6支;印台每组2个,数字章1—9。配组学具:回形针拼图形(1组);数字脸谱连线(1组);大嘴巴比多少(1组提高型)。 活动过程:一、玩游戏,复习有关数量关系1.玩拍手数数游戏(1—20):集体。2.序数游戏(1—10的接数):集体、小组、个别。3.根据点卡上的点子数做动作:集体、个别。
活动目标: 1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数; 2、培养幼儿从身边事物中发现单双数的能力; 3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。活动准备: 2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料活动过程:一、情景导入,引起兴趣 瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?二、在购物游戏中体验、感知单双数 1、教师讲解游戏规则。 数一数,你有几元钱?圈一圈,你能买几样东西? 2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。三、在交流与比较中理解单双数 1、讨论:你有几元钱?买了几样东西?还有钱多吗? 2、回收代用券:还剩一元的小朋友把代用券送到一边,都用完的送到另一边。 3、集体检验,解决问题:“1”该送哪边? 4、教师小结: ①像1、3、5、7、9这样两个两个地数,总会剩下一个的数叫单数;2、4、6、8、10这样都能凑成2个2个的数叫双数。 ②10以内有5个单数,也有5个双数。 ③单数挨着双数,双数挨着单数,它们手拉手,都是好朋友。
2、继续学习正确目测6以内的数群。 3、乐意主动的讲述自己的操作过程和结果。 活动准备: 1、教具:分类底版,6以内的实物卡片,相应数量的数卡 2、学具:超市售货员(分类底版,6以内的各种实物卡片,相应数(点)卡等),给一样多的发花(不同排列形式的实物操作卡,雪花片),一样多的放一起(6以内不同排列形式的实物卡片) 活动过程: 1、游戏导入,了解游戏玩法。 (1)出示分层式分类底版,各种球类实物卡。 教师:超市里有许多的球,让我们看看有哪些球呢?它们各是几个?你是怎么看出来的?引导幼儿用目测的方法数数,并能说一说自己数的方法。 (2)师幼共同讨论整理“分层货架”的规则:一样多的球放在一起
教学目标:1、通过游戏活动,初步理解5的概念,认识数字5。2、初步感受用不同方法来数数,并能按照一定的顺序来排列数。3、激发幼儿学习数学的兴趣,体验成功的喜悦,培养合作的意识。教学重点:通过游戏活动,初步理解5的概念,认识数字5。教学难点:初步理解5的概念。教学准备:1、 自制保险箱一个,神奇的盒子3个。2、 在信封的正反两面分别贴有图案和圆点个数一致的和不一致的各若干个,5个信封当中装有数字1、2、3、4、5,其他都是小小的数字5。3、 若干个小箩筐和一个大箩筐,若干糖果。4、 机器猫胸饰一个,《机器猫》的主题曲。教学过程:一、创设情境,导入新课。师:“小朋友们,你们看,这是谁呀?(出示机器猫胸饰贴在黑板上)原来是机器猫小叮当。今天它给我们小朋友出了个难题,这儿有个漂亮的保险箱,里面装着许多好东西,它让我们来想办法打开这个保险箱,可这个保险箱需要用密码打开,而密码藏在了这三个神奇的盒子里。”(出示箱子与三个神奇的盒子)
(一)通过抓国家政策机遇,实施电信普通服务工程,推进信息化工程1. 项目计划投资额X万元,完成投资额X万,截止今年9月底农村地区100兆光纤通达率已达X%以上,完成全县行政村4G覆盖率X%,100兆光纤覆盖率X%。2. 有线电视农村覆盖率低。目前,全县X个行政村(合并村)覆盖率只有X%左右,离X%的目标相距甚远。同时,近三年来,有线电视客户流失X万户,全县有线电视用户只有X万户,(全县共X户),入户率不足X%。
【点津】 1.不定式的复合结构作目的状语 ,当不定式或不定式短语有自己的执行者时,要用不定式的复合结构?即在不定式或不定式短语之前加 for +名词或宾格代词?作状语。He opened the door for the children to come in. 他开门让孩子们进来。目的状语从句与不定式的转换 英语中的目的状语从句,还可以变为不定式或不定式短语作状语,从而使句子在结构上得以简化。可分为两种情况: 1?当目的状语从句中的主语与主句中的主语相同时,可以直接简化为不定式或不定式短语作状语。We'll start early in order that/so that we may arrive in time. →We'll start early in order to/so as to arrive in time. 2?当目的状语从句中的主语与主句中的主语不相同时,要用动词不定式的复合结构作状语。I came early in order that you might read my report before the meeting. →I came early in order for you to read my report before the meeting.
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。