一、说教材1、教材内容分析:本课是人教版1年级数学上册第五单元的内容。10的认识的编排与前面8、9的认识基本相同,先显示一幅主题图供学生数数抽象出数10,再认识10、10以内数的顺序,比较相邻两个数的大小,最后学习10的组成和写数。10的组成十分重要,它是今后学习20以内进位加法和进一步认识100以内、万以内以及多位数的基础。 2、教学目标: (1)引导学生经历认识10的过程,初步建立10的数感。 (2)学会10的数数、认数、读数、写数、比较大小和组成,对10的数概念获得全面认识和掌握。 (3)引导学生感受数10与实际生活的密切联系,培养热爱祖国、热爱集体的情感。 3、教学重点: 掌握10的数概念和10的组成,体验数学在身边。 4、教学难点: 熟练掌握10的组成。 5、教具、学具准备: 多媒体课件、学具袋
尊敬的各位评委、各位老师,大家好,我今天说课的内容是九年义务教育人教版小学数学一年级上册第四单元《认识图形》的第一课时——认识图形。下面我将从说教材、说教法与学法、说教学过程和说板书设计这四方面来谈谈我对本课的教学设想。一、说教材: 1、教材分析 首先我对本教才进行简单的分析,课程标准把空间与图形作为义务教育阶段培养学生初步创新精神和实践能力的一个重要的学习内容。《认识图行》是本册教材《认识图形》的起始课,旨在认识长方体、正方体、圆柱和球这些立体图形,认识这几种图形有助于发展学生的空间观念,培养学生初步的观察能力,动手操作能力和交流能力。 2、说教学目标 依据一年级学生的心理特点和的认知能力,我确定了以下教学目标: 1、知识与技能:通过观察操作,初步认识长方体,正方体,球和圆柱体。 2、过程与方法:在观察、操作、比较等活动过程中,培养学生抽象、概括、实践、创新能力,建立空间观念。
一、教材分析本课是人教版3年级上册数学第3单元的第1课时,本课内容是在学习了长度单位米和厘米的基础上进行教学的,通过学习,使学生对常用的长度单位有一个比较完整的认识,对于今后学习面积单位和体积单位,发展学生的空间观念具有重要意义。二、教学目标:根据对教材的理解,同时结合学生已有的认知结构和心理特征,制定如下教学目标:(1)、知识目标:认识长度单位毫米和分米, 初步建立1毫米和1分米的长度观念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能进行长度单位间的简单换算。(2)、能力目标:通过估一估、量一量等活动,培养和发展学生的空间观念、估测能力、动手操作能力和推理能力。(3)、情感目标:经历实际测量的过程,体会长度单位在日常生活中的应用,感受数学和生活的密切联系,体验数学学习的乐趣。
2、懂得要爱护动植物,对破坏植物、残杀动物的行为表示气愤,在日常生活中能自觉做到爱护动植物,不做破坏动植物生态环境的事,积极参加保护动植物的公益活动。活动重点:感受动植物的生命现象,懂得爱护动植物。
1、利用色彩、粗细、疏密、节奏不同的点、线条及细小的形状、创造性的表现不同的雨及雨中的情景。2、尝试体验下雨给人与动物带来的不同感受。3、引导学生回忆下雨时的情景,感受人间亲情、友情以及人与自然的关系。
教学目标:1、在仔细观察常用文具的基础上,启发学生设计造型新颖、色彩鲜艳的各种常用文具。2、引导学生运用橡皮泥表现各种文具的形象,提高学生立体表现能力。教学重点:打开学生积极、丰富的创造性思维,引发对文具造型的兴趣。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 10.3总体、样本与抽样方法(二) *创设情境 兴趣导入 【问题】 用样本估计总体时,样本抽取得是否恰当,直接关系到总体特性估计的准确程度.那么,应该如何抽取样本呢? 介绍 质疑 了解 思考 启发 学生思考 0 5*动脑思考 探索新知 【新知识】 下面介绍几种常用的抽样方法. 1.简单随机抽样 从一批苹果中选取10个,每个苹果被选中的可能性一般是不相等的,放在上面的苹果更容易被选中.实际过程又不允许将整箱苹果倒出来,搅拌均匀.因此,10个苹果做样本的代表意义就会打折扣. 我们采用抽签的方法,将苹果按照某种顺序(比如箱、层、行、列顺序)编号,写在小纸片上.将小纸片揉成小团,放到一个不透明的袋子中,充分搅拌后,再从中逐个抽出10个小纸团.最后根据编号找到苹果. 这种抽样叫做简单随机抽样. 简单随机抽样必须保证总体的每个个体被抽到的机会是相同的.也就是说,简单随机抽样是等概率抽样. 抽签法(俗称抓阄法)是最常用的简单随机抽样方法.其主要步骤为 (1)编号做签:将总体中的N个个体编上号,并把号码写到签上; (2)抽签得样本:将做好的签放到容器中,搅拌均匀后,从中逐个抽出n个签,得到一个容量为n的样本. 当总体中所含的个体较少时,通常采用简单随机抽样.例如,从某班抽取10位同学去参加义务劳动,就可采用抽签的方法来抽取样本. 当总体中的个体较多时,“搅拌均匀”不容易做到,这样抽出的样本的代表性就会打折扣.此时可以采用“随机数法”抽样. 产生随机数的方法很多,利用计算器(或计算机)可以方便地产生随机数. CASIO fx 82ESPLUS函数型计算器(如图10-3),利用 · 键的第二功能产生随机数.操作方法是:首先设置精确度并将计算器显示设置为小数状态,依次按键SHIFT 、 MODE、 2 ,然后连续按键 SHIFT 、 RAN# ,以后每按键一次 = 键,就能随机得到0~1之间的一个纯小数. 采用“随机数法”抽样的步骤为: (1)编号:将总体中的N个个体编上号; (2)选号:指定随机号的范围,利用计算器产生n个有效的随机号(范围之外或重复的号无效),得到一个容量为n的样本. 讲解 说明 引领 分析 仔细 分析 关键 语句 观察 理解 记忆 带领 学生 分析 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.3 直线与直线、直线与平面、平面与平面所成的角 *创设情境 兴趣导入 在图9?30所示的长方体中,直线和直线是异面直线,度量和,发现它们是相等的. 如果在直线上任选一点P,过点P分别作与直线和直线平行的直线,那么它们所成的角是否与相等? 图9?30 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 5*动脑思考 探索新知 我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角. 经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角. 如图9?31(1)所示,∥、∥,则与的夹角就是异面直线与所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点(如图9?31(2)) (1) 图9-31(2) 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 12*巩固知识 典型例题 例1 如图9?32所示的长方体中,,求下列异面直线所成的角的度数: (1) 与; (2) 与 . 解 (1)因为 ∥,所以为异面直线与所成的角.即所求角为. (2)因为∥,所以为异面直线与所成的角. 在直角△中 ,, 所以 , 即所求的角为. 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 17
师:相信我能行,这样行不行?(播放课本53页插图)“老师宣布下周长跑比赛,东东觉得自己个子高,腿长,肯定跑得快,就不打算练习了”师:东东相信自己行,所以不用练习,你们有什么看法?生:相信自己能行,也要加强练习呀!生:东东的同学不仅相信自己行,还主动练习,这样东东的同学就会赢,东东可能会输。生:光说不练,不是真的行!师:同学们说得真是太好了,不能只说行,努力才能行啊。成功靠的不仅是自信,更多的要靠努力、方法和汗水。明白了这些道理,你们才能真正做到”我能行:!师:有没有信心大声的朗读儿歌《我能行》?(学生齐读儿歌总结)(三)、作业拓展师:现在请拿出写有“我能行”的纸飞机,从今天开始,如果每天你都能坚持做到纸飞机上“我能行”的事情,就给自己画一个笑脸。坚持一周,都做到,就把纸飞机拿到空旷的地方努力的放飞,并大声的对着天空说:我能行!(提醒学纸飞机掉在地上要捡起来,注意环保)
(2)教学内容的设计,一般须遵从学生认知规律,由表及里,由浅入深、完整、生动地呈现事物或事理本身的美学价值。在整体感知课文的艺术美和解决文字障碍之后,通过动手做“核舟”、改写评点“解说词” ,使学生在动手做、动手改、动口说中,理清课文层次和说明顺序。最后,学生们再一次通读全文,使他们的认知经历了从语言文字到形象生动的表象,再到语言文字的完整过程。帮助他们将语言形式和语言内容紧密结合起来。吉尔伯特·海特在其《教学的艺术》一书中曾谈到:“如果我们不能获得一声出自内心的笑,那么这一天的教学就白费了”。通过演课本剧,加深了学生对课文的理解和记忆,有利于培养学生的思考能力,想象能力,逻辑思维能力和语言表达能力。也正是获取一声声出自内心的笑的一种行之有效的方法。
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
设计意图:发现身边更多的学习好方法。活动三:巩固学习的好方法课件出示儿歌《学习好方法》,学生填空后,齐读儿歌。设计意图:学以致用,巩固学习的好方法。环节三:感悟明理,育情导行学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活以小组为单位,将各组总结的学习好方法张贴到板报上。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板左面的中间位置是课题《学习有方法》,右面从上到下依次是专心听讲、细心观察、珍惜时间、持之以恒、节约时间。
活动二:说出不开心的事首先,播放视频《我的烦恼》,学生会发现,自己不开心的事在他人身上也会出现。然后,学生说说自己还有什么不开心的事,教师相机引导。板书:生活中也有不快乐。设计意图:引导学生将自己遇到的不开心的事说出来,正确认识、接纳生活中的不快乐。活动三:快乐约定课件出示儿歌《快乐约定》,学生自己诵读,再齐读。设计意图:学以致用,形成积极乐观的生活态度。环节三:感悟明理,育情导行学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活把不快乐的事忘掉,把快乐的事记心里。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
4. 央视出品,必属精品。中央电视台大型文化节目《典籍里的中国》,聚焦优 秀中华文化典籍,通过时空对话的创新形式,以“戏剧+影视化”的表现方法, 讲述典籍在五千年历史长河中源起、流转及书中的闪亮故事。这有利于 ( )①增强文化认同感和民族自豪感 ②弘扬中华优秀传统文化 ③吸收借 鉴优秀外来文化的成果 ④让中华文化成为世界上最优秀的文化A. ①② B. ①③ C. ②③ D. ③④5. 2021 年国庆档上映的电影《长津湖》,是一部可歌可泣的保家卫国的战争题 材电影,为我们再现了伟大的抗美援朝精神。抗美援朝精神体现了 ( )①以爱国主义为核心的时代精神 ②舍生忘死的革命英雄主义精神 ③以爱 好和平为核心的民族精神 ④勇于承担责任的革命奉献精神A. ①② B. ①③ C. ②④ D. ③④6. 2022 虎年春晚节目《只此青绿》,让全网发起了“青绿腰挑战” 。节目中, 舞者青绿长裙曳地,发髻高耸入云,缓缓转身,似翠山慢移,层峦叠嶂;挥袖之 间,是风吹过大山的痕迹,亦若瀑布流过山间,勾勒出一副绝美中国山水画。
2. 内容内在逻辑第一框题《延续文化血脉》包括“中华文化根”和“美德万年长”两目内容,主要阐述了中华优秀传统文化是中华民族的根,中华传统美德是中华文化的精髓。第一 目侧 重从中华文化的丰富与发展角度,讲述中华民族在五千多年文明发展中孕育、创造的源 远流长、博大精深的中华文化,重点落在“中国特色社会主义文化积淀着中华民族最深 层的精神追求,代表着中华民族独特的精神标识,为中华民族伟大复兴提供精神动力”, 我们要坚定文化自信。第二目侧重从代代传承的中华美德角度,阐释中华传统美德的丰 富内涵和重要价值,重点落在“中华传统美德是中华文化的精髓,蕴含着丰富的道德资 源,是建设富强民主文明和谐美丽的社会主义现代化强国的精神力量”。第二框《凝聚价值追求》学生在前一框题学习了中华文化的作用与发展,增强了文 化自信心;学习了中华美德的内涵及影响,明白了美德的力量在践行。
【设计意图】 本题难易程度上属于容易类别, 考查学生对书本核心知识的理解, 引导 学生重视教材,夯实基础知识。尤其在社会主义人民民主的形式和公民参与民主生活 的形式两个易混点上加以区分辨别,从宏观和微观两个层面认识社会主义民主。3. (原创) 新冠肺炎疫情发生以来, 安徽省全面开展审批服务 “网上办”“掌上办”“邮 寄办”“预约办”等政务服务方式,让群众不出门,让数据多跑路。这些政务服务方式体现出 ( )①发展民主需要反映人民的民主愿望 ②人民群众享有的民主权利越来越多③社会主义不断发展,民主也愈发展 ④社会主义民主保障人民的根本利益A.①②③ B. ①②④ C.①③④ D.②③④【参考答案】 C【设计意图】 本题难易程度上属于中等类别, 围绕“新冠疫情”以来安徽省政务服 务方式的变革,以“看得见”的文字考察对民主的认识,以“看不见”的宣传,传递 民主的声音。同时,结合民主实践为人们生活带来的改善,使学生体会到我国社会主 义民主的优越性,增强政治认同,坚定对民主价值的追求。
第二阶段从具体步骤上的感知到解题方法的抽象概括,让学生结合板书的解题步骤,说出百分数应用题的解题方法及与分数应用题的区别与联系,通过这一阶段明确了百分数应用题的解答方法。有水到渠成之效。(三)巩固练习,促进知识内化教师出示书中的练习二十九的第1题及补充题,练习后说说理由。这一环节可以看出学生是否掌握了解答百分数应用题的方法,是否会用百分数的意义去检验结果的合理性。(四)通过出示思考题,发展提高教师在学生注意力高度集中、思维活跃的情况下引出思考题:不改变补充题的两个已知条件,你还可以提出哪些问题呢?是学习例1后知识的运用与延伸,也为今后学习求一个数比另一个数多百分之几的应用题做了铺垫。五、教学效果(一)进入六年级,进一步提高学生解答应用题的能力,并能够运用所学知识解答生活中的实际问题。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。