若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
目标:用夸张的手法画出小朋友穿着爸爸衣服的滑稽形象,体现出爸爸高大的形象。准备:爸爸的衣服一件,范画一张、蜡笔、勾线笔若干。过程:一、 出课题。(请一名幼儿穿着爸爸的大毛衣进活动室) XX小朋友今天跟平时有什么不一样?(衣服不是他的,很大) 你穿的是谁的衣服?(爸爸) 你们看,爸爸的衣服穿在小朋友身上是怎么样?(很大、肥肥的) 为什么?(爸爸的个子很高,爸爸身体胖胖的)
2、培养幼儿主动探索、尝试的精神,发挥幼儿的创造性思维。 3、培养幼儿耐心、细致的品质。 活动准备: 1、画有坐标点和花园的作业纸每人两份;铅笔、橡皮每人一份 2、正方形图形若干;小动物若干 活动过程: 一、 引出课题 小朋友,你们看,这是谁?(出示小猪)小猪在这块土地上建造了一个大花园,(出示花园)老师要来做回设计师,帮小猪把这个花园打扮的漂亮一些。 二、 学习活动 小朋友,花园铺好了,漂亮吗?那么这个花园有多大呢?不知道了吧!那么老师再问你,这个花园有多少个正方形合起来那么大呢? 1、小朋友点数正方形(默数) 2、师幼齐数(老师一个个拿下来数) 3、小结:用什么方法不容易出错 小结:这个花园有18个正方形合起来那么大。
四、教学过程 环节一:新课导入(游戏) 游戏规则:教师出示喜怒哀惧的情绪卡片,并让学生作出相应的表情。 教师总结:像同学们刚刚表演出的表情,开心、发怒、悲哀、惧怕都是我们在青春期经常碰到的情绪,除此之外还有哪些情绪类型,它们又有什么特点和作用呢?引出课题《青春的情绪》。
二、说教学目标语文课程标准强调,课程目标要根据知识和能力、过程和方法、情感态度和价值观三个维度设计,基于以上对教材的理解,结合四年级学生特点,设定教学目标如下:1.学习生字词语。能正确读写“鲜花盛开、绿树成阴、鲜果飘香、洋溢”等词语。2.有感情地朗读课文,能根据课文内容想象画面。3.读懂课文,明白“快乐应当和大家分享”的道理,愿意和同学交流阅读的感受。童话主要是通过丰富的想象、幻想和夸张来塑造形象、反映生活,对儿童进行思想教育,基于文体特点,确定教学重难点如下:教学重点:想象画面,体会巨人在行动上和心理上的变化。教学难点:体会童话特点,感受童话魅力
服刑的儿子接过这堆葵花子仁,手开始抖。母亲亦无言无语,撩起衣襟拭眼。她千里迢迢探望儿子,卖掉了鸡蛋和小猪崽,还要节省多少开支才凑足路费。来前,在白天的劳碌后,晚上再在煤油灯下嗑瓜子。嗑好的瓜子仁放在一起,看它们像小山一点点增多,没有一粒舍得自己吃。十多斤瓜子嗑亮了许多夜晚。服刑的儿子垂着头。作为身强力壮的小伙子,正应是奉养母亲的时候,他却不能。在所有探监的人当中,他母亲的衣着是最褴褛的。母亲一口一口嗑的瓜子,包含千言万语。儿子“扑通”给母亲跪下,他忏悔了。一次,同龄的朋友对我抱怨起母亲,说她没文化思想不开通,说她什么也干不了还爱唠叨。于是,我就把这两个故事讲给他听。听毕,他泪眼朦胧,半晌无语。
主持人:然而我们又是怎样对待我们的父母的呢?下面我们来做个调查?你是否了解你的妈妈?1、你妈妈的生日是_________。2、你妈妈的体重是_________。3、你妈妈的身高是________。4、你妈妈穿_______码鞋。5、你妈妈喜欢颜色是________。6、你妈妈喜欢水果是________。7、你妈妈喜欢的花是________。8、你妈妈喜欢的日常消遣活动是_____________。请你如实回答。把你的答案写在一张纸寄给你妈妈评分答对6题以下的请你以后多与妈妈沟通。主持人:其实值得感恩的不仅仅我们的母亲,我们对父亲、师长、亲朋、同学、社会等等都应始终抱有感恩之心。我们的生命、健康、财富以及我们每天享受着的空气阳光水源,都应该在我们的感恩之列。一位盲人曾经请人在自己的乞讨用的牌子上这样写道:“春天来了,而我却看不到她。”我们与这位盲人相比,进一步说与那些失去生命和自由的人相比,目前能这样快快乐乐地活在世界上,谁说不是一种命运的恩赐,我们还会时常愤怒得发抖而总去抱怨命运给自己的不幸和不平吗?
一、 说教材1.教材分析《童年的发现》讲的是作者童年时的一个发现,反映了儿童求知若渴的特点和惊人的想象力。课文先概述了作者童年时的发现,然后具体叙述这项发现的经过,最后写这个发现在几年后老师讲课时得到证实。根据文章的特点,我选用了语文主题丛书《金色童年》中的《少年爱迪生》作为拓展。两篇文章主题相似,爱迪生小时候也遭受了和文中费奥多罗夫相似的遭遇:“世界上重大的发明与发现,有时还面临着受到驱逐和迫害的危险。”
活动目标: 1. 让幼儿初步感受时间是流逝,一去不复返的。 2. 感受时间的价值,体会时间的宝贵。 3. 教育幼儿做事情不能拖拉,懂得珍惜时间。 活动准备: 1. 幼儿过生日课件一套。 2. 故事背景、动物图片一套。 3. 幼儿操作材料:穿珠、玻璃珠、勺子、盘子、橡皮泥、包装纸。 4. 摄像机一部。 活动过程: 1. 观看课件“过生日”,了解随着时间的流逝,人慢慢的长大。 2. 教师引导幼儿讨论:“小朋友过了几个生日?”“每次的生日蛋糕上面蜡烛的数量有什么不同?”“随着每次过生日小朋友的样子发生了什么变化?”“想一想,自己两岁生日的时候是什么样子?”“那你们还能不能回到两岁的时候?” 3. 教师启发幼儿,在日常生活中看到哪些事物随着时间而变化?(小鸡的成长、树苗的成长……)
三、 活动准备: 1、国微、国旗、长城的图片,国歌音乐。 2、活动前引导幼儿有意识地向成人了解为国争光的先进人物和事例。 3、事先录制好运动员比赛的精彩片断与领奖的情景,收集有关图片。 四、 活动过程 (一)开始部分: 师:“我们每天做操前都要升旗,升旗时奏的歌是什么歌?”(国歌)升的旗是国旗。 (二)基本部分: 1、谁来说一说国旗是什么样的?(老师出示国旗图片)引导幼儿从国旗的颜色、特征来说。(国旗是红颜色的、 2、我们一起来听一听这首歌。(放国歌磁带) “这首歌和我们平时听的歌一样吗?有什么不一样?” “除了我们升旗时奏国歌,还有什么时候奏国歌?” 3、我们来看一看他们在干吗?(播放运动员比赛领奖的录像) (1)提问:这是哪个国家的运动员?你怎么知道的? (2)领奖的时候,是哪个国家的运动员得到了冠军?你怎么知道的?你听见什么?看到什么?
2、引导幼儿创编具有一定意义的短小快乐的舞蹈。3、激发幼儿积极参与舞蹈活动的愿望,体验舞蹈活动的快乐。活动准备:1、鼓一面、鼓棒两根、录音机、音乐磁带。2、学习各种舞步。活动过程: 一、幼儿随教师鼓点的变化而做动作,训练幼儿节奏感。师:“小朋友,跟我一起敲敲鼓好吗?”(幼儿走入活动室自由找空位站好,教师敲鼓,幼儿随鼓声的快慢,调整自己脚步的速度进行表演) 二、游戏“快乐的脚步”。1、师:“小朋友表演得真好,你们的脚步真快乐,下面我们一起来做个快乐的脚步的游戏,好吗?”2、师:“老师的两根鼓棒表示小朋友的两只小脚,老师的鼓棒往哪边敲,你的小脚就往哪边跳。”(教师变换鼓棒位置敲鼓,幼儿随鼓棒位置的变化及鼓声速度的快慢变换舞步进行动作。)过渡:小朋友累了吧!让我们坐下休息一会儿!快乐的脚步花样真多,我们可以用各种各样快乐的脚步,加上手和身体的动作,编出优美的舞蹈来。今天,老师就用快乐的脚步,加上手和身体的动作,编出了一则非常好看的舞蹈,下面请小朋友欣赏。
[活动目标]1、培养幼儿的节奏感受力和对音乐活动的兴趣。2、丰富幼儿的想象力和创造力。 [活动核心]1、让幼儿学会基本的击拍方法和强弱变化,能听节奏变换。2、幼儿能自己动手动脑制作或寻找伴奏乐器。 [活动准备] 电子琴1台,打击乐器1套,各种瓶罐,沙子,石头,种子,水,筷子等等供幼儿操作的材料。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。