解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系数a、b的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计1.多项式与多项式的乘法法则:多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.2.多项式与多项式乘法的应用本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础
光的速度约为3×108米/秒,一颗人造地球卫星的速度是8×103米/秒,则光的速度是这颗人造地球卫星速度的多少倍?解析:要求光速是人造地球卫星的速度的倍数,用光速除以人造地球卫星的速度,可转化为单项式相除问题.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是这颗人造地球卫星速度的3.75×104倍.方法总结:解整式除法的实际应用题时,应分清何为除式,何为被除式,然后应当单项式除以单项式法则计算.三、板书设计1.单项式除以单项式的运算法则:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的应用在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象
一、情境导入1.计算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根据多项式乘以单项式的运算归纳出多项式除以单项式的运算法则吗?二、合作探究探究点:多项式除以单项式【类型一】 直接利用多项式除以单项式进行计算计算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根据多项式除以单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)设AE与DG相交于M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板书设计1.边角边:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.两边和其中一边的对角对应相等的两个三角形不一定全等.2.全等三角形判定与性质的综合运用本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边角边”掌握较好,但在探究三角形的大小、形状时不会正确分类,需要在今后的教学和作业中进一步加强分类思想的巩固和训练
1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点) 一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA”如图,AD∥BC,BE∥DF,AE=CF,试说明:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xym2,绿化的面积是35x×34y=920xy(m2),则剩下的面积是xy-920xy=1120xy(m2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.三、板书设计1.单项式乘以单项式的运算法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以单项式的应用本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
十一、说互动:教师与学生的互动、学生与学生的互动和小组之间的互动,以多种形式表现歌曲。十二、说板书:本节课我的板书设计主要以突破重难点为主,可让学生直观看到所要学习的新知识,很快掌握6/8拍节奏的特点,并巩固加深所学习过的音乐知识,在演唱的时候能够完整准确地运用所学的知识。十三、说媒体:主要目的用于聆听和感受音乐,让学生更好的参与教学活动,也充分调动了学生的多种感官,启发学生的联想和想象力,激发学生的学习兴趣与求知欲,丰富学生情感。十四、说评价:以多元化形式评价,本节课我采用的是师生评价,老师对学生的评价,学生对老师的评价,学生对学生的评价。贯穿整个教学过程,以利于促进学生发展。学生对学生的评价:体现在音乐活动中,学生对学生的表现给予正确的评价,对音乐的表现有一个很好的认识和提高。
5、请小朋友回去后把学会的儿歌念给爸爸妈妈听,请他们猜猜,儿歌里藏着多少数字?小鸡一家一共有几只小鸡?活动总结及反思1、儿歌的内容和形式比较吸引幼儿。整个活动的设计由易到难,层层递进,提问体现层次性。幼儿通过看、听、表演等形式,表现出对学习数字歌谣的浓厚兴趣。儿歌的主题贴近幼儿的生活,有利于幼儿理解、分享交流、想象扩散。在目标、内容上能与计算、德育、生活相结合,体现整合观。2、儿歌中小鸡一家还隐藏着数字"10",可以让幼儿回家和家长一起把数字"10"编入儿歌。这样使儿歌更有完整性,也能让家长参与,体现家园互动。3、幼儿在念儿歌时,有些生疏,教师可以提醒幼儿想着数字顺序、记着数字念儿歌。让孩子学会念数字歌谣的方法4、活动的过程中幼儿可能容易走神,如何抓住幼儿的注意力,让整堂课可以顺利的完成成为考验教师的难点。
再让学生用“啦”字哼唱歌谱,让学生学会自主学习。跟琴哼唱歌词。结尾句处理(渐弱)注重细节,突出重难点。学会歌曲后做情感处理:在悠扬的音乐声中播放视频乡间的小路,看有哪些景物,对比身处乡间和城市的环境,引导学生用轻松愉快的声音演唱。完整、熟练地演唱歌曲。(轻松富有弹性的声音和高位置唱)。接下来我用竹笛演奏《乡间的小路》,让学生理解、体验和感受不同的乡村风格。 最后让学生带着感情演唱全曲,要注意指导学生体会歌曲的演唱情绪,强调演唱声音要自然、圆润、轻柔。3、表演歌曲学会歌曲后,学生分组,用不同的演唱形式处理歌曲。如:对唱、表演唱、小合唱等。教师对每组的表现做鼓励性评价。让他们“动”起来,并融入到歌曲意境中去,更好的理解歌曲。
另外,歌曲中的“路”、“福”、“诉”、“咐”、“住”每个字发音要准确,要竖起来,并送到共鸣腔体里,唱到位置上,使每个音都圆润,明亮。4、在处理歌曲情感时,我首先采用了朗读法,学生更能够深切体会音乐的情绪。其次我还采用了画旋律线的方法,让学生能够更直观的感受到歌曲连绵流畅旋律,体验歌曲的情绪是随着音高起伏而变化的。第五环节:拓展延伸这个环节主要是情感的升华,教师设计播放歌曲《月之故乡》以此唤起学生思乡情绪,进行艺术熏陶,感受音乐中的情与美,浅谈自己的感受。第六环节:结束语(小结)通过本课的学习我们学习了3/4拍和4/4拍,掌握了拍子本身的强弱关系。同时学习了变化音#4在歌曲中的演唱技巧。希望我们可以一共去感受作者的思乡之情,同时让我们寻找到另外一种表达情感的方式—歌唱。
师:现在请同学们跟着老师一起朗读歌词。师:我要请两位同学上来,一位同学扮演小朋友,另一位小朋友扮演小象,为我们朗读一次歌词,谁愿意来?学生扮演角色朗读歌词师:你们觉得他们演得好吗?能得多少分?请学生评价,教师总结。(三)编创动作表现歌曲师:如果能加上动作就更好了,现在我们一起来开动脑筋,为这首歌编创动作。在教师的引导下,一句句为歌曲编创动作(四)听唱法学唱歌曲师:我们学会了歌词,还编了动作,当更要学会唱,请同学们跟着老师的琴声学唱歌曲。学生学唱,然后由学生跟着音乐表演歌曲(五)对唱法表演歌曲师:现在我们请1、2组同学扮演小象,3、4组的同学来问小象,我们分角色来表演歌曲。 学生先在原位上演练一遍,然后全体起立,相对而立,表演歌曲。教师作出评价和肯定。三、总结师:今天我们学到了什么学生回答师:今天,我们学习了小象的知识,知道了要与小象成为好朋友,要保护小象和其它动物,学会了表演歌曲《可爱的小象》。
3、小结:本节课我们听唱了三首不同风格的关于星空的音乐作品,同学们还可以收集更多此类歌曲听一听,感受夜晚星空之美。十、 说板书设计:首先,板书课题时用小星星的图案代替文字,更加吸引学生,容易激发学生的学习兴趣。其次,本节课的板书主要体现乐理知识:反复记号;柯达伊手势图谱。板书目的帮助学生解决学习中的难点。十一、说教学反思:亮点:教师根据学生的身心特点及学习情况有目的、有计划的引导学生进行学习,以达到教学目标。根据学生已有知识,运用柯达伊手势教学法,在准确演唱歌曲的基础上,学唱歌谱,帮助学生建立音高概念,完整的演唱歌曲。成功解决本课教学的难点,完成教学目标。不足之处:教师对于学生律动表演的规则讲解不到位,学生操作不熟练。专业术语使用不到位、不规范,有待于进一步改进和提高。