(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
尊敬的老师,亲爱的同学们:大家上午好!我是襄阳长春外国语学校(襄阳四中实验中学)八(3)班的王泽宇,今天我国旗下讲话的题目是《谁让我们是学生》。学生!一个多么响亮的名字,却又干着多么累的差事。每天都是学习学习再学习,作业作业照旧作业,真是太苦了!但是,学习又是多么紧张!说小了,它决定着我们一生的运气和前程;放大了,它决定着社会的生长和国度的壮大。梁启超说过“少年强则国强”,而“强”表如今有知识有文化有技能。要想拥有这些,我们必须学习。我们是学生,祖国的来日是否壮大就牢牢地掌握在我们手里!谁让我们是学生,谁让我们是襄阳四中实验中学的学生!祖国的未来、母校的光辉需要我们去创造!所以我们不怕苦,不怕累,靠着勤奋和毅力一直在求学的道路上坚持着。每天早晨,人们还在熟睡,连太阳公公都还在梦乡时,我们已经活跃在塑胶跑道上。响亮的背书声划破天际,整齐的脚步声震动大地,新的一天在我们的欢呼声中开始。
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.
阅读下面唐诗,完成下面小题。漫成一首杜甫江月去人只数尺,风灯①照夜欲三更。沙头宿鹭联拳②静,船尾跳鱼拨刺③鸣。【注释】①风灯:船中桅杆上挂着的灯,有纸罩能避风。②联拳:指夜宿的白鹭屈曲着身子,三五成群团聚在沙滩上。拳,屈曲。③拨刺:拟声词,指鱼在水里跳动发出的声音。11. 这首诗通过“_____________”“风灯”“宿鹭”“_________________”等意象,描绘出一幅恬淡平和的江上月夜图。
(二)(4分)阅读下面诗歌,完成下面小题。瀑布联句李忱千岩万壑不辞劳,远看方知出处高。溪涧焉能留得住,终归大海作波涛。14. 首句运用了什么手法?有什么表达效果?15. 请简要分析最后两句寄寓了作者怎样的情怀?
先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。
历史老师无奈地说过:“有次我让大家整理近代史的笔记,别人都是两三张纸就搞定了,你知道崔安然写了多少吗?56页!唉……”数学老师总结道:“崔安然啊……就是单纯的脑子笨。”我还听隔壁班的王梦茹同学说,她俩是发小,上学时崔安然在学习方面就认真而吃力,效果不理想。
我开始格外关注这个笨小孩:凌乱的头发,额头上此消彼长的痘痘,瘦小的肩膀……明明是单薄的小姑娘,身体里却像是有使不完的能量,面对大大小小的挫折时她波澜不惊、一往无前地继续努力,偶有一丝焦虑掠过,也稍纵即逝。我不知道那压力如山的一天又一天,崔安然究竟是怎么扛下来的……这一切,都令人心疼。
之后,阿根廷决赛战胜联邦德国,获得了1986年世界杯冠军,马拉多纳凭借5个进球、5个助攻获得金球奖。1990年,马拉多纳带领阿根廷队获得世界杯亚军。1994年,马拉多纳带领阿根廷队再度冲击世界杯,结果因药检阳性禁赛,这导致阿根廷队军心大乱,止步八分之一决赛。1997年10月,马拉多纳宣布退役。
哲人有言,英雄的业绩、他们的言论,就是那个时代的精华。的确,英雄是一个民族的“凝结核”。如杨靖宇所言,“革命就像火一样,任凭大雪封山,鸟兽藏迹,只要我们有火种,就能驱赶严寒,带来光明和温暖。”英雄就是这革命的火种,没有英雄的引领,个体的力量就难以凝聚;缺少先锋的领路,前行的方向将难以看清。马克思因此感慨,“每一个社会时代都需要有自己的伟大人物”。
山不在高,有仙则名。水不在深,有龙则灵。斯是陋室,惟吾德馨。苔痕上阶绿,草色入帘青。谈笑有鸿儒,往来无白丁。可以调素琴,阅金经。无丝竹之乱耳,无案牍之劳形。南阳诸葛庐,西蜀子云亭。孔子云:何陋之有?
【海外网2月21日电】2月20日,北京冬奥会正式闭幕,这届冬奥会为世界留下了独具特色的中国记忆,收获了众多好评,各国运动员持续发文为北京冬奥会点赞。“感谢、祝福”成了高频词。
倘若意犹未尽,试看杨万里的《郡中送春盘》:“饼如茧纸不可风,菜如缥茸劣可缝。韭芽卷黄苣舒紫,芦服削冰寒脱齿。”白如茧纸的是春饼,吃的时候,从春盘里夹取菜蔬各一小箸,卷为细简状,这便是咬春饼。
“无废城市”,是以创新、协调、绿色、开放、共享的新发展理念为引领,通过推动形成绿色发展方式和生活方式,持续推进固体废物源头减量和资源化利用,最大限度减少填埋量,将固体废物环境影响降至最低的城市发展模式。2017年,中国工程院院士杜祥豌在国内首次牵头提出创建“无废城市”及“无废社会”的建议。
桃花峪是黄河中下游分界线,把桥建在这里自有讲究。我个人的选择原因,就实用层面来讲,自是离老家更近,却也有非实用层面:是它的外形更时尚更壮观,名字我也格外钟爱:桃花峪——黄河——大桥,既明艳又铿锵,既坚固又绵长,不是么?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。