(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
1)上课时,同学们是怎么做的呢?窗外飞来几只小鸟,叽叽喳喳地叫着,同学们没有一个人看,这是为什么呢?2)如果上课不专心听讲,搞小动作,会造成什么后果呢?2.小结:上课玩东西,做小动作,会分散注意力,不能集中精神听老师讲课,既影响了自己的学习,有时还影响其他同学听课。当自己想玩时,一定要管住自己,不玩,不做小动作,时间长了,就能养成遵守课堂纪律的好习惯。过渡语:课上除了要专心听讲外,还应该怎样做呢?3.出示图三,讨论:(1)为什么想发言时要先举手?(2)如果自己举手老师没让发言,让其他同学发言时,应该怎么做?4、小结:想发言时要先举手,得到允许后再发言,如果老师让其他同学发言就认真听。随便说话,发言乱抢,谁也听不清,会影响自己和同学学习,影响老师讲课。同学们都举手发言,有秩序地讨论问题,大家才能学习好。过渡语:现在咱们知道应该怎样上课了,下面老师想请你们当小老师,来看看下面这些同学做得怎么样,怎样帮助他们? (出示图片)
师:相信我能行,这样行不行?(播放课本53页插图)“老师宣布下周长跑比赛,东东觉得自己个子高,腿长,肯定跑得快,就不打算练习了”师:东东相信自己行,所以不用练习,你们有什么看法?生:相信自己能行,也要加强练习呀!生:东东的同学不仅相信自己行,还主动练习,这样东东的同学就会赢,东东可能会输。生:光说不练,不是真的行!师:同学们说得真是太好了,不能只说行,努力才能行啊。成功靠的不仅是自信,更多的要靠努力、方法和汗水。明白了这些道理,你们才能真正做到”我能行:!师:有没有信心大声的朗读儿歌《我能行》?(学生齐读儿歌总结)(三)、作业拓展师:现在请拿出写有“我能行”的纸飞机,从今天开始,如果每天你都能坚持做到纸飞机上“我能行”的事情,就给自己画一个笑脸。坚持一周,都做到,就把纸飞机拿到空旷的地方努力的放飞,并大声的对着天空说:我能行!(提醒学纸飞机掉在地上要捡起来,注意环保)
三、在培训管理上突出“三个规范”以制度规范为基础。我们建立了完善的培训管理制度,明确了培训的目标、内容、方式和评估标准,规范了培训的组织、实施和评估流程,确保培训工作有序进行。以评估考核为驱动。我们注重培训效果的评估和考核,通过定期的培训评估和考核,及时了解干部培训的收效,发现问题并进行调整和改进,确保培训工作取得实效。以信息化管理为支撑。我们运用信息化技术,建立了培训信息管理系统,实现了培训信息的集中管理和共享,提高了培训工作的效率和透明度。同时,我们也利用信息化手段进行培训资源的开发和分享,提供多样化的学习资源,满足干部学习的需求。通过以上主要做法和方式,我们不断加强干部教育培训工作,提高了干部的专业能力和综合素质,为税务事业的发展提供了有力的支撑。
(三)持续加强师资建设。一是优化结构。按照“有编必补”的原则,继续争取特岗教师和入编教师补充计划,有效满足各学校用人需求。做好教师学科结构的调研摸底,持续推进城乡之间、区域之间、校级之间的正向流动,探索实践薄弱学科跨校走教,促进教师的合理配置。二是全员培训。持续抓好教师专业化培养,扎实开展中小学教师学科培训、新上岗教师岗前培训、骨干教师及青年教师管理能力培训等,不断提升教师教学技能。三是名师建设。深入推进名师工作室建设,充分发挥名师的引领、指导、帮扶作用,继续开展“微课程 菜单式”名师团送教下乡培训活动等,积极构建名师成长梯队培养机制。加强工作室考核考评,切实提升研究教学、服务教学、创新教学的能力,力争推出一批教科研成果。(四)持续夯实教学常规。一是“三精”攻坚。全面启动新一年度“精品课、精品作业、精品试卷”评选活动,集选优质教学案例,形成县级精品教学成果集,为各学校提供可借鉴、可参照的优质教学资源。二是压实目标。
三、科学育人抓质量不是只抓课本知识,而是要从抓习惯、抓细节、抓学困生、抓读书等方面入手。抓质量要从培养学生良好的学习习惯入手,良好习惯的培养,只靠班主任一人是心有余而力不足的,需要每一位教师齐心协力,齐抓共管。抓质量要注重细节,如语文要从生字、背诵开始夯实基础,数学要从基本计算、每一个小知识点、读题审题点滴落实。抓好每个细节,进而形成习惯,学生的成绩自然就会提高。抓质量要把目光投向学困生,如课堂上设计一些学困生能够回答上来的问题并及时表扬他们,不断增强自信,课后适当开“小灶”,加强指导,还要跟踪辅导,持续关注,增强他们的学习主动性和积极性,成绩也会有提高。抓质量还要抓读书,要培养学生的读书兴趣,让读书成为学生的生活方式,不仅课上读,还要在课外读,不仅让学生读,教师自己更要读。
另一方面建立定期会商研判制度。局教育整顿领导小组及办公室建立定期会商研讨机制,每隔 10 天集中研究解决暴露出来的堵点、难点、瘀点问题,落实应对措施和解决方案,确保上请下达及时、沟通协作到位,实现全局“一盘棋”高效运转。三是深挖“3 个问题不足”,排清体内深层毒 县局以“刀刃向内”“刮骨疗毒”的决心和勇气,深入查摆自身问题短板,全面剖析队伍中存在的沉疴痼疾。在“6+2+1”的基础上,深挖问题,总结出队伍中存在的 “ 三个不足 ”(规矩纪律意识不足、业务素质能力不足、规范执法行为不足),共三大类 19 项问题,要求民辅警逐一对照问题短板,深入查摆,通过剖析原因、深挖根源、找准病灶、分类施策、靶向治疗,推进抓源治本。“三个聚焦”推动教育整顿见实效政法队伍教育整顿启动以来,宽甸公安局落实“三个聚焦”,高标准、严要求,推进教育整顿工作走深走实。
四、现场办公下基层。推动现场办公下基层,着力解决好人民群众最关心最直接最现实的问题,是该区对领导干部在主题教育中“重实践”“建新功”的硬性要求。调查研究现场办公。区县级及以上领导在开展调查研究过程中,对现场能解决的问题及时协调解决。截至目前,通过开展调查研究现场办公解决的问题32个。深入企业现场办公。强化服务意识,持续优化营商环境,牢固树立“一切围绕企业、一切为了企业、一切服务企业”的理念,加强与企业的沟通联系,积极做好企业帮扶工作,主动深入挂点企业及在建项目,宣传相关惠企政策,针对企业生产所存在的问题,现场协调解决。截至目前,帮助企业协调解决用电、供水、招工等问题87个。“民事直达”现场办公。结合全区工作实际,研究制定了工作方案,通过“说事”“办事”“回访”三个环节,及时回应和解决广大人民群众急难愁盼问题。以每月15日召开的“民事直达”现场会为抓手,对群众诉求简单、村(社区)有能力解决的小矛盾、小纠纷、小问题,现场及时处理、当场反馈结果,切实做到小事不出村(社区)。截至目前,现场处理相关事情21件,得到了涉事群众的好评。
以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。
二是以ZT教育聚力引领服务。组建“走出去”的D员先锋队,在集团安全生产、防汛抢险、防冻抗暑、为民解难等一系列急、难、险、重工作中冲在前,勇于挺身而出,敢于打硬仗,切实推动D建引领下的社会治理和为民服务工作取得实效。三、ZT教育存在的不足及下步打算尽管国企(集团)D委的2023年ZT教育取得了初步的成效,但还存在着一些不足需要加强改进。一是学习形式还不够丰富。目前,还未全面开展D员领导干部到联系支部讲DK、“听老D员讲DK”“诵读悟思想”等活动。二是在工作开展中缺乏特色做法。只按照﹡﹡主题办工作任务清单开展学习教育,与集团亮点工作结合较少,缺乏特色、创新。接下来,国企(集团)D委将紧扣2023年ZT教育阶段要求、步骤安排、规定动作,严把标准关、质量关,进一步加大统筹协调、宣传引导,推出集团特色做法,特别是围绕第一批ZT教育“收官阶段”经验总结和重点难点工作突破,不断推进2023年ZT教育取得新进展新突破。
4.加强师风师德建设,增强教师的责任心和使命感。四、下学期工作计划1.加强教学质量的管理力度,进一步扭转教师的教育观念,进一步加强师德师风建设,使教师能“爱岗敬业,教书育人,为人师表”做四有好老师。2.积极联系兄弟学校联考,横向比较了解自身不足,采取针对性措施以期做得更好。3.扎实推进三教改革,加强课程建设,采用多种培训方法,对不同层次的教师进行多元培训,提高整体教师的业务素质,更新教师理念,从“教教材”到“用教材”的转变;以“教师为中心”向以“学生为中心”的转变;从“教育观”到“学习观”的转变;由“传授型”教师向“科研型”教师的转变。4.加强教师队伍建设,有计划地做好青年教师培养工作。继续做好“青蓝工程”师徒结对工作,各位师傅要关爱徒弟,在“备课、听课、上课、作业”等各个环节上把好关,使之能迅速站稳讲台。继续组织好青年教师教学基本功比赛,让青年教师脱颖而出。