老师们,同学们,大家早上好!今天我国旗下讲话的主题是:争做文明学生,共筑美好校园。大家知道做什么事情不简单、做什么事情不平凡吗?把每一件简单的事情做好,就是不简单;把每一件平凡的事情做好,就是不平凡。我的一个好朋友,每次在食堂吃完饭,都会一边把盘子递给收餐具的阿姨,一边礼貌地对她说声“谢谢”。收餐具的阿姨通常忙得顾不上回答——她们正以最快的速度整理着几只手同时甩在桌上的餐盘。不过也有时候,阿姨会冲我们笑笑,或者开心地说“不用谢”,然后继续麻利地工作。我不知道这一句简单的“谢谢”能有多大的作用,不过我想,至少这个阿姨的一天可以因此多一丝愉快,我们的校园里可以多一点文明的正能量。
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
一是理论学习还存在不少的差距。部分单位领导班子集中学习、交流研讨等抓得比较紧,但基层D支部和普通D员尤其是生产一线、流动D员参与性不高,不同程度存在温差落差现象。二是调查研究成果转化不佳。少数单位对规定要求研究不深、结合不紧、落实不够,甚至还存在赶进度、“转段”的思想。三是为民务实的导向还不够鲜明。个别单位在涉及民生、群众关注度高的问题上整改力度不大,效果不理想,与群众的期盼有差距。四是统筹联动合力还不够强。有的单位就ZT教育抓ZT教育,缺乏统筹意识、全局思维,存在学做“两张皮”现象,等等。对这些问题,我们将采取有效措施,切实加以解决。三、推动ZT教育走深走实的下步工作思路下一步,全省ZT教育将按照关于ZT教育的一系列重要指示精神和x、x委的部署要求,更大力度推进落实x重点措施,学习教育上持续深化,特别是要把新时代爱国主义教育作为学习教育的重要内容;调查研究上务求实效,重点抓好调研成果转化,做好调研的“后半篇文章”,在深入调研的基础上讲好专题D课;检视问题上深刻剖析,开好专题民主生活会;整改落实上动真碰硬,更大力度解决实际问题,不断推动ZT教育走深走实。
二、ZT教育工作中存在的短板弱项和矛盾问题在ZT教育有力有序推进过程中,虽然取得了一定的成效,但是也存在一些比较突出的问题。[公众号:笔宝&*~#@君]一是理论学习还存在不少的差距。部分单位领导班子集中学习、交流研讨等抓得比较紧,但基层D支部和普通D员尤其是生产一线、流动D员参与性不高,不同程度存在温差落差现象。二是调查研究成果转化不佳。少数单位对规定要求研究不深、结合不紧、落实不够,甚至还存在赶进度、“转段”的思想。三是为民务实的导向还不够鲜明。个别单位在涉及民生、群众关注度高的问题上整改力度不大,效果不理想,与群众的期盼有差距。四是统筹联动合力还不够强。有的单位就ZT教育抓ZT教育,缺乏统筹意识、全局思维,存在学做“两张皮”现象,等等。对这些问题,我们将采取有效措施,切实加以解决。三、推动ZT教育走深走实的下步工作思路
敬爱的老师、亲爱的同学们:大家早上好!我是九(5)班的林xx,今天我国旗下讲话的题目是积极复习,有效迎考。时间过的真快,一晃半个学期即将过去,马上就将迎来期中考试了。期中考试不仅是对同学们半个学期以来学业成果的一次盘点、检阅,更是对同学们的自信心、自觉性、意志力、诚信度的一次考验。也是对老师们辛勤工作的最好回报。勤奋出天才,这是一面永不褪色的旗帜。它永远激励着我们不断地追求,不断地探索。每个人都应该学会手脑并用,把烂笔头和聪明大脑结合起来,刻苦学习,一心向上。只有积极复习,有效迎考方能取得好成绩。在复习阶段,我们要温故知新、查漏补缺,把所有的作业本和测试卷都整理出来,找出原来的错题,进行归纳总结,分析错误的原因,吸取经验教训,再做一些同类的题目进行巩固,并学会一题多解,举一反三。
尊敬的各位领导、各位老师、亲爱的同学们:大家早上好!你会用什么词来形容秋天呢?金灿灿、秋高气爽、秋风瑟瑟,对!这些就是秋天独有的景色。秋天还是收获的季节,春华秋实,有种子,有积累,有沉淀,才能有收获。学习、人生都如此。不管你是初来乍到的新生,还是在这里已经学习了一两年的学哥学姐,都会在10月8日迎来学部的第一次月考。一听考试,你们现在是不是已经感受到了秋风瑟瑟啊?其实,这是很正常的心理反应,老师今天就想说说考试这个事。首先,面对考试的态度要乐观。每个人是独特的,学习的能力是不同的,学习的基础也有差异,自然学习就有快有慢。在学习时,既需要有好的竞争氛围,又不能一味的去和别人比较,为什么人家背一会儿就会背了,我怎么背不会?为什么人家一听课就会做题,正确率还很高,我怎么就不行?一旦产生了这些消极的想法,就会阻碍学习。我们学习是为了将来更好的生活、是为了获得学习能力。因此,找准自己的位置,向榜样学习,认真做好自己,乐观面对考试,就显得特别重要。只要努力了,就无愧于心,就能让家长放心,就能回馈老师,加油吧,孩子们!
老师们、同学们,上午好!今天是第二十个全国中小学生“安全教育日”,所以,今天我讲话的题目是《珍爱生命,安全第一》,教育部长周济曾讲过这么一句话:“没有安全,何谈教育”,的确是这样,没有校园安全,哪来教育事业的发展。校园安全不但关系到每位同学能否健康成长,也关系到每个家庭的幸福。因此,我们必须清醒的认识到“安全无小事”。但校园安全事故每天都在上演,校园安全问题成了永恒的话题。楼道踩踏、食物中毒、溺水身亡、交通安全、违规用电、火灾火险、体育运动、网络交友、打架斗殴、流感病毒、毒品危害等等,这些校园安全事故时刻威胁着我们青少年学生的健康成长。下面我们听一听这些触目惊心的安全事故。XX年12月7日湖南省湘潭育才中学发生惨重的校园踩踏事件,一名学生在下楼梯的过程中跌倒,引起拥挤踩踏,造成8人死亡,26人受伤。XX年12月2日,山东东营某学校校车侧翻事故造成3名学生死亡。XX年12月8日,安徽省淮北市同仁中学篮球场边的高墙轰然坍塌,5名女同学的花季生命被永远定格在哪里。XX年4月27日,辽宁省葫芦岛市某中学6名学生校外私自游泳,溺水死亡。
尊敬的各位领导、老师,亲爱的同学们:大家早上好!我是一年三班的xx。在开始今天的国旗下讲话之前,我先给大家诵读一段《三字经》,“犬守夜,鸡司晨。苟不学,曷为人。蚕吐丝,蜂酿蜜。人不学,不如物”。你们知道这段话的意思吗?这段话的意思是:狗知道在夜间替人守卫门户,公鸡知道每天早晨鸣叫报晓。人如果不知道用心学习,还有什么资格称为人呢?蚕吐丝可以供人们做衣服,蜜蜂酿蜜可以供人们食用。人要是不学习,那连动物都不如了。雄鸡报晓,蜜蜂酿蜜,春雨润万物,瑞雪兆丰年,世间万物都有自己的责任。同学们,作为学生,我们的责任是什么呢?对,是学习,所以今天我国旗下讲话的题目就是“学习是一种责任”。自古以来就有“补漏趁天晴,读书趁少年”、“花有重开日,人无再少年”的古训,由此可见学习的重要性。同学们,既然我们走进了学校的大门,就必须担当起自己的学习责任。那么,你承担起这份责任了吗?上课你认真听讲了吗?课后你认真、及时完成作业了吗?遇到难题你不逃避而是认真思考或请教他人吗?
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。“两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
活动中合作目标的设计,是以中班孩子年龄特点为依据的。中班孩子的同伴关系已经冲破了亲子、师生等关系的局限,开始向同龄人关系过渡,他们需要去分工、合作,共同完成任务,从而体验合作的愉悦。而幼儿与同伴之间的合作意识却是中班孩子所缺少的,因此在这次活动中,我特意强化了这方面的渗透和引导。如在“两人三足”中两名幼儿的腿绑在一起要同时走动,他们必须得随着身体的逐渐协调一致,才能合作完成任务,体验合作活动的快乐。之后,在不断加快的速度中,在游戏的快乐气氛中,幼儿的互助、合作能力则得到了再一次凸显。 “两人三足”是一种民间体育游戏,因此,本次活动开始部分就以民间音乐为背景,以两人合作并配以儿歌的民间游戏“拍手游戏歌”导入,创设了具有民间特色的游戏氛围。“两人三足”是一种控制性较强的合作游戏,有较高平衡、协调的要求,这里选用双人合作游戏“拍手游戏歌”作为前奏,既集中了幼儿的注意力,调动了大脑皮层的兴奋性,使身体各器官快速进入状态,又为基本部分的合作、协调作了专门准备。
一、聚焦发展航标,增强赶超争先“源动力”。坚持“抓项目就是抓发展、谋项目就是谋未来”的理念,以项目建设奠定经济发展“压舱石”。一是强力推进项目招引。围绕全县变电设备首位产业和新能源新材料主导产业,以及农业产业“接二连三”,充分发挥*在外乡贤等作用,大力开展招商引资和“三请三回”活动,重点抓好“货多多”、“中太电力”、“乾景纺织科技”等企业的跟踪对接,配合做好市场调研等工作,全力推动项目落地。二是大力发展特色产业。坚决扛起粮食生产安全政治责任,全力稳定粮食种植面积,压紧压实水稻种植任务,高质量抓好高标准农田建设,坚决杜绝抛荒撂荒现象,遏制耕地“非农化”“非粮化”。大力发展蔬菜产业,做好经营主体及在外从事蔬菜种植或销售人员跟踪对接工作,积极向上争取蔬菜大棚、水渠灌溉等乡村振兴项目。
(三)持续抓好森林防灭火工作。继续把森林防灭火工作作为重中之重,严格落实森林防灭火网格化分级管理和层级负责制;进一步加强隐患排查、加大巡护值守力度;持续加大森林防火宣传力度,引导群众“清明”期间开展绿色文明祭祀,坚决杜绝森林火灾的发生。(四)全面助力春耕备耕生产。组织农业技术人员下乡包村开展技术服务、灾害天气防范和病虫害防控、粮食安全生产、春耕物资有序调运等工作,加强对春耕备耕生产的指导,确保春耕生产有条不紊、不误农时。(五)持续改善人居环境。持续推进人居环境整治,借助我市“创文巩卫”活动热潮,不断深化文明乡村建设成果,大力培育和践行社会主义核心价值观,发挥新时代文明实践站(所)作用,常态化开展文明实践活动和理论宣讲,持续推进农村移风易俗,治理婚丧陋习,为改善人居环境提供精神保障。
4、要将安全工作放在特别重要的位置,明确责任,落实措施,实行问责制、捆绑考核制和班务管理不安全事故“一票否决制”。每季度召开一次安全工作专题会议,认真排查和整改薄弱环节。完善应急预案,明确岗位职责。坚持课间巡查制度,并由主要领导负责检查。开学初班主任代表学校与每位学生的家长签订《学生安全协议书》,落实责任。采取措施加强学生养成教育和日常行为规范教育,特别重视卫生工作,保证校园环境时时、处处干净、整齐。提高防疫意识,加强教育,采取措施,严防腮腺炎、水痘、流脑等群体性传染性疾病在校内流行。5、全面贯彻教育方针,扎实推进素质教育。加强体育卫生艺术教育工作,经常性地开展丰富多彩的教育活动,提高全体学生的综合素质。本学期我们要广泛开展阳光体育活动,安排好每天“大课间”活动内容,让每一位学生身心都能得到锻炼。(五)搞好后勤工作,发挥保障作用
尊敬的老师,亲爱的同学们:大家好!我今天在国旗下演讲的主题是:拥抱新学期。寒冷的冬天已经销声匿迹,我们迎来了暖暖的春季,也迎来了一个崭新的学期。我们度过了一个愉快的寒假,重返校园,首先祝同学们在新的一年里,学得轻松,学得愉快,并且学有所成。俗话说一年之计在于春,我们在春天里播撒文明、勤奋、健康、团结,会收获到明礼诚信、乐学善思、身心健康、团结友爱。收获离不开耕耘,只有辛勤耕耘,我们才能享受到进步的满足感,收获的成就感。在新学期开始之际,我建议大家要做好以下“五个心”:一为收心。寒假虽然有作业,但大多都以玩为主,开学应转变为以学为主,尽快调整心态,投入到新学期的学习生活中来。二为决心。新学期有新的开始,新的心态,主动制订学习计划,下定决心,努力实现理想。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。