提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

教师通用简约英文简历

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 部编版语文八年级下册《口语交际:即席讲话》教案

    部编版语文八年级下册《口语交际:即席讲话》教案

    【目标导航】1. 掌握即席发言的要领和表达技巧。2. 通过情境创设的训练,克服发言时的紧张心理,学习即席发言的快速构思方法,提高瞬时应变和即席发言能力。3. 进行即席发言的初步尝试,充分调动课堂参与的热情,培养良好的语言习惯,表现出较高的文化素养和气质风度。【课时安排】1课时自由分成学习小组,做好活动计划,分配小组成员交际任务, 围绕“即席讲话”的这个交际主题,做好本次口语交际。【新课导入】即席讲话,也叫即兴发言,是指在某个特定场合,临时受到邀请,由他人提议或自己认为有必要而作的简短讲话。【交际技巧】即席发言有三个特点:一、临场性即席发言既不能事先拟就讲稿,也不能进行试讲,它必须靠临时准备、临场发挥,因此临场性就成了即席发言最主要的特征。

  • 签约主播合同律师拟定合同

    签约主播合同律师拟定合同

    本协议由以下双方签订:甲方:法定代表人:地址:乙方: 身份证号: 地址:电话:本合约中的签约主播指与XXXXXXXX公司(下称“公司”)签订了《经纪合同》(下称“合同”),通过公司分配的签约主播工作号(下称“指定账号”)固定在XX时代YY,网易CC,酷狗繁星,奇秀等视频社区【开设频道】,展示自己才艺的视频主播与主持人。本条例适用于与公司签订了《经纪合同》的全部签约主播。1 公司培训1.1 签约主播【开设直播频道】前需接受公司提供为期一周的专业培训,并签订《经纪合同》。1.2 签约主播需向公司提供形象照片,以便公司对签约主播进行包装和推广。1.3 签约主播通过培训后,通过指定账号【开设直播频道】,开展主播工作。2 双方的义务和权利 双方的合作期限为三年,即从20__年_月_日至20__年_月_日2.1 主播(乙方)必须遵守公司(甲方)规定的行为守则(具体参照员工守则)。2.2 乙方必须在甲方指定的网络平台上直播。2.3 违反公司行为守则,情节严重者甲方有权对乙方进行禁告或罚款处罚。 2.4 甲方承诺给予乙方优先的合作机会、专属的推广资源、软硬件支持以及广阔的发展空间等。

  • 人教版新课标小学数学四年级下册运算定律与简便计算单元复习说课稿

    人教版新课标小学数学四年级下册运算定律与简便计算单元复习说课稿

    一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程

  • 幼师交通安全培训心得体会

    幼师交通安全培训心得体会

    1.安全……无小事,学校安全事件,涵盖到学生的学习、生活的方方面面,必须做细、做到位。   2.学校的安全教育至关重要,安全教育应渗透到教学的每个环节中。   3.学校的突发事件预案,必须结合本校实际制定、切实可行可操作。   4.加大安全宣传力度,可通过宣传单、册、网络、报纸、板报、多媒体等手段,让学生现场参与到安全实践中来,并通过他们将安全知识向更多的人传授。

  • (世界水日)国旗下讲话:节约用水,做环保小卫士

    (世界水日)国旗下讲话:节约用水,做环保小卫士

    我可以问大家几个问题吗?你每天早上起来用什么洗脸呢?你妈妈每天做饭都需要用什么呢?而你每当口渴的时候喝的都是什么呢?答案可能是同一个:“水。” 是啊,水看上去是那样的普通,普通得让人不可缺少而又随时可以忘记。人们只是在渴了的时候想到喝水,而对于水的本身关心得很少,甚至从未关心过。水,是生命之源,是任何物质都不可替代的,是世界上最重要,最珍贵的资源。没有水就没有生命,人类无法生存,更谈不上什么文明和发展。至今为止仍然认为水资源是取之不尽,用之不竭的想法是愚蠢和有害的。实际上,淡水资源是非常有限的,虽然水占地球表面的70%,但是只有%的是淡水,而其中99%都被冻结在荒芜人烟的南北极,只有不到1%可以利用。当前,由于世界人口的剧增、人类的过度索取和浪费,以及工业污染等原因,世界淡水资源越来越匮乏,人类正面临着严重的水危机。

  • 2022年山西省中考语文真题

    2022年山西省中考语文真题

    王某曰:古之学者,虽问以口而其传以心虽听以耳而其受以意。故为师者不烦,而学者有得也。孔子曰:“不愤不启,不悱①不发,举一隅②不以三隅反,则不复也。”夫孔子岂敢爱其道,骜③天下之学者,而不使其蚤④有知乎!以谓其问之不切,则其听之不专;其思之不深,则其取之不固。不专不固,而可以入者,口耳而已矣。吾所以教者,非将善其口耳也。

  • 2022年云南省中考语文试卷

    2022年云南省中考语文试卷

    环滁皆山也。其西南诸峰,林壑尤美,望之蔚然而深秀者,琅琊也。山行六七里,渐闻水声潺潺,而泻出于两峰之间者,酿泉也。峰回路转,有亭翼然临于泉上者,醉翁亭也。作亭者谁?山之僧智仙也,名之者谁?太守自谓也。太守与客来饮于此,饮少辄醉,而年又最高,故自号曰醉翁也,醉翁之意不在酒,在乎山水之间也,山水之乐,得之心而寓之酒也。

  • 2021年福建省中考语文试题

    2021年福建省中考语文试题

    终于,一块巨石立在我们面前。几个威严的大字,赫然入目:老山界。这里是1934年11月,红军长征经过惨烈的湘江之战后,翻越的第一座大山。当年翻越这座山的陆定一,记下了这段难忘的经历。于是,一篇美文《老山界》进入了共和国的中小学课本,激励着一代代国人在人生的道路上奋勇前行。为纪念革命先辈,为宣传红军精神,傍着这座山的东安、新宁、城步三地,都立有老山界的碑石。

  • 2022年重庆市中考语文A卷

    2022年重庆市中考语文A卷

    这一天,阳光明亮,大鸟忽然觉得它的双脚可以抬起了。它十分激动地对冰山说:“我能飞了,我能飞了,我可以回家啦!”它扇动翅膀,飞了起来。可是,大鸟很快掉进了海水里。它好几天没吃东西,已经没有一丝力气。

  • 2022重庆中考语文A卷答案

    2022重庆中考语文A卷答案

    作者通过举例,更具体地说明了“自下而上找结构”的方法;/作者分步骤,更为清晰地讲解了如何从庞杂信息中找到结构;/作者通过高度概括(提炼观点),使读者更为快速地了解从庞杂信息中找到结构的方法。

  • 语文听课心得体会

    语文听课心得体会

    在两节优质课中,教师放手让学生自主探究解决问题。每一节课,每一位老师都很有耐性的对学生有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者,引导者和合作者”的教学理念。老师们的语言精炼、丰富,对学生鼓励性的语言十分值的我们学习、在思想教育方面,这些教师都处理的比较好,自然真挚的情感流露感染了学生和听课的每一位教师及家长。看到任欣和初艳丽两位语文老师气定神闲,信手拈来,不时激起一个个教学的浪花,不仅令学生陶醉、痴迷,更让我连声赞叹。从中我更深刻地体会到了学习的重要性与紧迫感。

  • 高中语文说课稿模板

    高中语文说课稿模板

    2、教学目标及依据。  根据《语文课程标准》的具体要求,结合教材,本着面向全体学生、使学生自主全面主动发展的原则,我确定本节课的教学目标如下:  ①知识与能力目标:  ②过程与方法目标:  ③情感、态度与价值观目标:

  • 小学语文优秀说课稿模板

    小学语文优秀说课稿模板

    二、说教学目标 年级的学生初步具备自主学习能力,但对课文理解能力,品析能力还不足,仍需在教师的带领下对重点词句、写作手法加以点播。基于对教材的理解,结合___年级学生特点,我确定了本课的三维目标:1、正确认读并规范书写本课 个生字,重点指导 等字的书写。理解由生字组成的词语。2、正确、流利,有感情的朗读课文。运用 的方法概括课文的主要内容,体会 的深刻含义。3、有感情地朗读 段,学习 手法,并进行小练笔。其中,教学重点是:通过精读分析课文,体会 的思想感情难点是:学会 的写作手法。三、说教法学法在教学过程中,我将采用任务驱动、朗读感悟为主的教学方法,同时借助多媒体辅助教学,加深对文本的理解。引导学生使用自主、合作、探究的学习方法,把课堂的主动权真正交给学生。

  • 小学语文说课稿经典获奖

    小学语文说课稿经典获奖

    一、教材分析  首先我说说教材。根据新课程标准、本组课文训练的主要意图和学生的实际,我们确定了本课的教学目标。  知识目标:理解重点词句,了解爬山虎的脚的特点。  本事目标:学习作者观察和表达方法,培养学生留心观察周围事物的习惯和本事。  情感目标:激发学生观察的兴趣,做生活的有心人。  二、教学重点  经过对词句的理解,了解爬山虎脚的特点。  三、教学难点  爬山虎是怎样向上爬的  四、教具准备  课件、彩色笔、画纸  五、教法和学法  结合本课的特点和本组课文的训练重点,以读书训练为经,语言文字训练为纬,开发全脑为桥,调动学生的多种感官参与学习过程,以学生饶有兴趣的说、演、画、议,来代替教师单一的讲、管形式,在艺术的熏陶下激发学生兴趣,在兼容并举中力求最大限度地发挥学生的自主性、主动性、发展性、创造性,从而到达激发兴趣、理解感悟的境界。

上一页123...727374757677787980818283下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。