教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
一、教材分析《走近我们的老师》是统编教材小学《道德与法治》三年级上册第二单元第 5 课,共有两个话题,本节课学习的是第一个话题《我和老师的故事》,主要是引导学生理解老师对学生的良苦用心,学会和老师沟通,旨在激发师生之情,感恩老师、理解老师。二、学情分析三年级的小学生经过两年的学校生活后,对教师的工作有了一些 了解,但仅限于与教师接触的部分,对教师课余时间做些什么、怎么 备课、教育学生的方式等方面,学生还不太了解。因此,要通过有效 的教学,帮助引导学生进一步地理解教师的工作。三、教学目标与重难点 基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。
把自然物改造成人造物 1.提问:请小组展示作品,并请别的同学推想这件作品是怎样被改造出来的?我们改造后的树叶是什么样子的?而改造前的树叶又是什么样子的?(教师引导学生思考并说出自然物变成人造物的过程,采用倒推的方式,结合现实中的人造物,去推想制成它的原材料,以及这些原材料在自然界中本来的样子。) 2.提问:生活中还有哪些物品,由自然物被制造成了人造物。(如:演示经过加工变成了石碑或石雕;木头经过加工变成了木槌;兽皮经过加工变成了皮衣等等)
2、学习用彩泥制作棒棒糖,巩固团员、搓长、盘条等技能。 3、能运用已有的经验,创造出不同造型的棒棒糖。 活动准备: 各种大小、形状、色彩的棒棒糖;彩泥、泥工板 活动过程: 一、预热阶段。 1、欣赏棒棒糖,感知棒棒糖的形状美与色彩美。 教师把幼儿带来的棒棒糖插在柚子上(插3—4个柚子),布置成展览。 师:看,这儿有一个棒棒糖展览,我们一起来看一看。(幼儿自由欣赏) 2、说说棒棒糖。 师:你最喜欢哪个棒棒糖?为什么?(鼓励幼儿大胆的表达自己的见解。) 这些棒棒糖什么地方是一样的?
活动内容: 回忆交流自己乘坐各种交通工具时的感受。活动准备:1.有过乘坐交通工具的经验。2.幼儿在各种交通工具前合影的照片.3.交通工具模型。活动过程:1. 展示交通工具的模型。2. 请幼儿说出名称,和幼儿讨论这些交通工具是在陆上、海上还是空中使用,并说明其功能特征。3.请幼儿观察并讨论这些交通工具的异同。4.你见过这些交通工具吗?在哪看见过的?5.你坐过哪些交通工具吗?坐在里面看到了什么,感觉怎样? (1)请幼儿个别介绍。 (2)请幼儿相互交流。
活动目标:1、通过交流展示各种工具,初步感受工具的种类很多。2、在观察操作尝试中感知工具的作用很大,发展综合能力。3、能积极参与活动,在活动中体验观察和探索的乐趣。 活动准备:1、课前幼儿收集各种工具。老师和幼儿到室外寻找特殊的工具。2、卷笔刀、削苹果机,刨子,开瓶器。以及相对应的辅助用品。 活动过程:一、尝试操作使用工具1、师:“前几天老师和大家一起收集了各种各样的工具,今天让我们就来试试这些工具,看看它们有什么用。” (幼儿分别操作工具,提醒幼儿注意安全)
一、活动目的养成教育目标:能独立完成自己的作品。认知:幼儿的动手操作能力、想象力及欣赏力。技能:复习巩固撕贴技能。情感:喜欢参与美工活动。 3.人格;教育幼儿不乱丢碎纸,提高幼儿的环保意识。二、活动准备各种撕贴材料若干,用旧挂历做成的半成品(拖鞋、帽子……)
活动准备:1、环境创设:开设“绿色餐厅”丰富幼儿饮食经验“小小配菜师”的区域数活动环境、“国庆节日美食”大调查主题墙面2、前期经验:通过资料收集、家庭调查、参观食堂、解读菜谱等形式帮助幼儿积累了初步的配菜经验3、教学具:菜谱一份、一周菜谱空白表格4张、美工操作材料若干(各色色纸、固体胶、剪刀、抹布,垃圾盒等)活动过程:一、情景导入、经验重现又是星期五了,每个星期五都是我们保健老师为我们制定下周菜谱的日子,我刚刚拿到一份下星期的菜谱,我们一起来看看。(出示菜谱)1、菜名我来起。引导幼儿为下周的菜品起菜名,要求简单清楚。2、菜肴我推荐。鼓励幼儿说说自己最喜欢哪道菜?并说出推荐的理由。★小结:原来我们在制定菜谱的时候既要考虑颜色上的搭配,还要注意菜的味道和营养。
一、说教材《挑山工》是统编小学语文四年级下册第七单元中的一篇略读课文。课文的大致内容是,作者在泰山上几次遇见一位挑山工,每次都是作者先出发,但后来总被挑山工赶在前面。通过攀谈,作者明白了一个道理。回到家里,他画了一幅画挂在书桌前,并以挑山工的精神来激励自己。课文借此赞扬了挑山工坚韧不拔、奋发向上的品格。这篇课文条理清晰,以“生疑——解疑——明理”的顺序安排材料,文风朴实,含义深刻,是对学生进行语言文字训练和思想教育的好教材。这篇文章的训练重点是“怎样读懂一篇课文”。揭示了一个意味深长的哲理:无论干什么事情都要一心向着目标,脚踏实地,坚持不懈地做下去,就一定能达到目的。
(一)解题:包身工──旧社会一种变相的贩卖奴隶的形式。被贩卖的多是女孩子由承办人送到工厂做工,无人身自由,所得工资全部归承办人所有,在这种形式下做工的人也称包身工。包身工是指二三十年代(时间),在上海东洋纱厂里(地点),为外国人工作的女工(工作性质)。因为这些女工在进厂时已经签订了卖身契,失去了人身的自由权,所以被称为“包身工”。标题中的“包身”二字,突出了帝国主义、封建势力对中国女童工的残酷剥削的罪行,控诉了他们的野蛮残暴的统治手段,以激起人们的义愤和同情,这是全文的中心思想。(二)关于报告文学:《包身工》属于报告文学。(同类题材有初中的《地质之光》、《谁是最可爱的人》)报告文学,是文学体裁的一种,散文的一类,是文艺通讯、速写、特写的总称,是文学创作中的“轻骑兵”。
一、对教材内容的处理根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容有增有减。二、教学策略的选用(一)运用了模拟活动,强化学生的生活体验,本框题知识所对应的经济现象,学生已具有了一定的生活体验,但是缺乏对这种体验的深入思考。因此在进一步强化这种体验的过程中进行了思考和认知,使知识从学生的生活体验中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。(二)组织学生探究知识并形成新的知识我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中主动构建知识。也正是由于这些认识来自于学生自身的体验,因此学生不仅“懂”了,而且“信”了。从内心上认同这些观点,进而能够主动地内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
中华民族伟大复兴,绝不是轻轻松松、敲锣打鼓就能实现的,实现伟大梦想必须进行伟大斗争。在前进道路上我们面临的风险考验只会越来越复杂,甚至会遇到难以想象的惊涛骇浪。在新时代的新长征路上,还有许多“雪山”“草地”需要跨越,还有许多“娄山关”“腊子口”需要征服,一切贪图安逸、不愿继续艰苦奋斗的想法都是要不得的,一切骄傲自满、不愿继续开拓前进的想法都是要不得的,全D必须勇于进行具有许多新的历史特点的伟大斗争。“大事难事看担当,逆境顺境看襟度。”领导干部要做敢于斗争、善于斗争的战士。新形势下,我国面临复杂多变的发展和安全环境,广大D员干部要以强烈的政治责任感和历史使命感,安不忘危、存不忘亡、乐不忘忧,时刻保持警醒,不断振奋精神,保持只争朝夕、奋发有为的奋斗姿态和越是艰险越向前的斗争精神,努力创造经得起实践、人民、历史检验的实绩。