提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小学数学人教版四年级上册《计算工具的认识》说课稿

  • 部编人教版一年级下册识字《小青蛙》(说课稿)

    部编人教版一年级下册识字《小青蛙》(说课稿)

    一、说教材《小青蛙》是一篇孩子们喜欢的儿歌。本组教材充分体现了工具性和人文性的统一。本文要求掌握的生字7 个,要求会认的字12个。由于面对的是低年级学生。我尽量把识字和阅读结合起来,以识字为主,阅读为辅,以多种游戏的形式,使枯燥的识字教学”活“起来。二、说教法学法教法:新课标倡导学生是学习和发展的主体,语文教学要关注学生的个体差异和不同的学习需求,爱护学生的好奇心、求知欲,充分激发学生的主动意识和进取精神。因此,将教学方法确定为促进学生自主、合作、探究性学习的“情境教学法”和“自主识字法。”教学中要充分利用多媒体直观教学手段,创设情境,开展活动,有张有弛,引导学生积极主动地投入到学习活动中去。

  • 部编人教版一年级下册识字 《小青蛙》说课稿

    部编人教版一年级下册识字 《小青蛙》说课稿

    一、说教材小青蛙是小学一年级语文下册第一单元识字课中的第三课,这是一首儿歌形式的字族文识字课,读起来朗朗上口,音韵和谐,讲述了小青蛙的外形和本领,号召大家要保护小青蛙。本课共有12个生字,其中母体字“青”和不同的形旁搭配,构成五个新字,形成了以“青”为基础的一组音近、形近的形声字,而这些字的意思在这首儿歌的情景中有具体体现,于是这些字的音形义在语境中便巧妙的联系起来,很有特点。二、说学情低年级孩子由于受年龄特点和认知发展特点的限制,爱玩好动,思维活跃,表现欲强,但持久性差。只有尊重孩子的天性,才能收到理想的学习效果,那么让课堂充满乐趣,不仅是低年级孩子的心理需求,也是语文教学、识字教学本身内在的要求。另外,虽然孩子们已经有半年的语文学习经验,但识字能力尚在形成过程中,教师仍需指导识字方法,让学生跟着老师一起感悟。

  • 小班数学教案:青蛙妈妈和蝌蚪宝宝(8以内的数量)

    小班数学教案:青蛙妈妈和蝌蚪宝宝(8以内的数量)

    2、运用目测接数的方法感知、判断8以内的数量。   3、能较仔细地进行操作,注意保持幼儿用书画面的整洁。 活动准备:   1、经验准备:幼儿认识了数字8,有目测接数的经验。   2、物质准备:教具和学具。 活动过程:   一、音乐活动《小蝌蚪》。   教师带领幼儿随着音乐扮演小蝌蚪游进教室,并根据歌词内容表演。   二、看数字找蝌蚪。   1、教师:青蛙妈妈遇到了一件伤心的事情,它找不到自己的宝宝了,你们愿意帮助它们吗?   2、教师:你知道每只青蛙妈妈生了几个宝宝吗?你是从哪儿看出来的?引导幼儿从青蛙身上的数字说出它生了几个宝宝。

  • 幼教大班数学教案-学习2—9的相邻数

    幼教大班数学教案-学习2—9的相邻数

    2、让幼儿熟练地找出2—9个数的相邻数。3、进行朋友间团结友爱的教育。活动准备:1、1— 10的数字头饰一套,1—10的数字卡一套。2、已学会10以内的数字。活动过程:一、开始部分:师:小朋友,我们知道每个数子都有自己的邻居,前面一个,后面一个,前面的比它少1,后面的比它多1。今天,我们来做个游戏,看谁能快速的找出数字的邻居。

  • 大班数学教案:电话号码学习6以内的数

    大班数学教案:电话号码学习6以内的数

    活动准备:电话本,!—6的数字卡活动过程:一,用打电话的方式,列出不同数字的排序1, 小动物要开运动会了,我们怎么才能通知他们呢?2, 打电话要知道电话号码,我们来查一查,小动物家的电话号码是多少?3, 这么多的电话号码哪些地方是一样的?4, 都有5个数字,为什么电话号码是不一样的呢?小结:相同的几个数字,经过不同的排列,就会有不同的电话号码,真有趣!

  • 大班数学教案:5以内数的口头加减法

    大班数学教案:5以内数的口头加减法

    2.发展表象思维。   二、重点与难点1.重点:理解加减法的意义。 2.难点:用语言表达运算过程。   三、材料及环境创设 1.材料:塑料小动物,雪花片等物品。1-5的数字卡。加减法图意的图片卡。印章。 2.环境创设:在数学区放置以上材料,让幼儿操作摆弄,进行探索和复习巩固活动。

  • 幼儿园中班数学教案:数字—我们的好朋友

    幼儿园中班数学教案:数字—我们的好朋友

    2、从周围生活中发现多种有趣的数字,初步了解数字在生活中的实际意义。  活动准备: 1、幼儿收集的有数字的物品;   2、电脑课件(打电话的情景)   3、英语儿歌  活动过程:   一、英语儿歌引出。   提问:说说这首儿歌里有哪些数字?   二、介绍生活中有数字的物品。   你收集的材料上有哪些数字,它们有什么作用?   (在此进行提升幼儿对数字的认识,如:食品袋上的数字代表生产日期、保质期;药瓶上不仅有保质期,而且还有剂量等。我们生活中处处有数字,数字用处很大。它可以表示顺序、日期、时间等。如果没有数字,生活就会变得乱糟糟,甚至还会出事故呢!)。

  • 幼儿园中班数学教案:5以内的相邻数

    幼儿园中班数学教案:5以内的相邻数

    活动准备:   1、森林背景图,6张蘑菇房子图片。   2、1-6的大点卡和数卡一套。   3、小猴、小兔头饰各一个和老虎的图片一张   4、幼儿数学操作板1个/人,1-6的点卡一套/人。   5、标有1—6的数字卡片,每个小朋友一张   6、故事《住宾馆》。  活动过程:  一、开始部分:初步理解“邻居”关系。  1、拍手游戏:“嘿嘿,ⅹⅹⅹ(小朋友名),我问你,你的朋友在哪里?”“嘿嘿嘿,在这里!”(被问的小朋友举起旁边小朋友的手。)   2、我们每个小朋友都有自己午休的小床,请你说一说自己的邻居都有谁,让幼儿理解什么是邻居。

  • 大班数学教案:区别10以内的单双数

    大班数学教案:区别10以内的单双数

    2.激发幼儿参与数活动的兴趣,培养幼儿积极思维的能力。 活动准备:1、一定数量的卡通玩具。1—10的数字卡片若干。 2.自制小奖品和金钥匙若干。 活动过程:1、介绍“中奖游戏”。 (1)提问:“什么叫中奖?”老师解释,帮助卡通宝宝找朋友。如果帮它们都 找到了朋友(指都找到了一对一对卡通玩具),就算中奖,能得到奖品。 如果其中有一个卡通宝宝找不到朋友,则不能得到奖品,也就是没有中奖。 (2)讲解游戏规则。 每人请出若干数量卡通宝宝来做游戏。分成弟弟妹妹两队,进行比赛。提示幼儿可用已经玩过的非正式活动中“圈一圈”游戏的方法,来玩中奖游戏。 2.第一轮游戏将幼儿分成两队进行,理解双数和单数的意义。 (1)第一轮比赛结束后,引导幼儿讨论:他们能不能中奖?为什么?加深对游戏意义的理解。即:帮助卡通宝宝找到朋友,就能中奖,反之则不行。 (2)第二轮比赛后,引导幼儿讨论:为什么弟弟队(或妹妹队)总是能中奖?让幼儿知道游戏中“请多少数量的卡通宝宝”是能否中奖的关键。 小结归纳:遇到2、4、6、8、10的数量的卡通宝宝都能找到朋友,也就都中奖。遇到1、3、5、7、9的数量的卡通宝宝都会剩下一个找不到朋友,所以不能中奖。 (3)认识2、4、6、8、10是双数;1、3、5、7、9是单数。

  • 中班数学教案:6以内的物体按数量归类

    中班数学教案:6以内的物体按数量归类

    2、继续学习正确目测6以内的数群。 3、乐意主动的讲述自己的操作过程和结果。  活动准备:   1、教具:分类底版,6以内的实物卡片,相应数量的数卡 2、学具:超市售货员(分类底版,6以内的各种实物卡片,相应数(点)卡等),给一样多的发花(不同排列形式的实物操作卡,雪花片),一样多的放一起(6以内不同排列形式的实物卡片)  活动过程:  1、游戏导入,了解游戏玩法。   (1)出示分层式分类底版,各种球类实物卡。   教师:超市里有许多的球,让我们看看有哪些球呢?它们各是几个?你是怎么看出来的?引导幼儿用目测的方法数数,并能说一说自己数的方法。   (2)师幼共同讨论整理“分层货架”的规则:一样多的球放在一起

  • 北师大初中八年级数学下册利用四边形边的关系判定平行四边形教案

    北师大初中八年级数学下册利用四边形边的关系判定平行四边形教案

    解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.

  • 二年级数学下册第九单元数学广角推理教案

    二年级数学下册第九单元数学广角推理教案

    1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

上一页123...149150151152153154155156157158159160下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!