提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

学校体育教师教学心得体会多篇

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    人教版高中数学选修3分类加法计数原理与分步乘法计数原理(2)教学设计

    当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.

  • 人教A版高中数学必修一二次函数与一元二次方程、不等式教学设计(2)

    人教A版高中数学必修一二次函数与一元二次方程、不等式教学设计(2)

    三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(2)

    本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.

  • 人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    人教A版高中数学必修一两角和与差的正弦、余弦和正切公式教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;

  • 人教A版高中数学必修二有限样本空间与随机事件事件的关系和运算教学设计

    人教A版高中数学必修二有限样本空间与随机事件事件的关系和运算教学设计

    新知讲授(一)——随机试验 我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示。我们通常研究以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不确定出现哪个结果。新知讲授(二)——样本空间思考一:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,...,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码。这个随机试验共有多少个可能结果?如何表示这些结果?根据球的号码,共有10种可能结果。如果用m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间。

  • 个人五四精神在我心心得体会多篇

    个人五四精神在我心心得体会多篇

    弘扬五四精神,肩负历史使命,就是要树立理想,立志报国,献身于改革开放和现代化建设的伟大事业,自觉地把自己的人生追求同祖国和民族的命运前途联系起来,在服务祖国服务人民的实践中发挥自己的聪明才智;就是要深入群众,投身实践,与工农相结合,与实践相结合,自觉到祖国和人民最需要的地方去,了解国情,经受锻炼,增长才干,开拓视野;就是要勤奋学习,善于创造,刻苦学习马克思主义基本理论,努力学习经济科技法律历史和其他方面的知识,用人类创造的优秀文明成果武装自己,提高创新能力,勇于创新实践;就是要锻炼品格,磨砺意志,树立正确的世界观、人生观、价值观,提高自身素质,完善人格品质,努力做中华民族美德的传承者,做体现时代进步要求的新道德规范的实践者,做新型人际关系和良好社会风尚的倡导者;就是要脚踏实地,艰苦奋斗,深刻认识我国的基本国情,继承和发扬艰苦奋斗的优良传统,任何时候都不懈怠创业精神,都不涣散奋斗意志,创造无愧于前辈、无愧于后辈的业绩。

  • 个人五四精神在我心心得体会多篇

    个人五四精神在我心心得体会多篇

    弘扬五四精神,肩负历史使命,就是要树立理想,立志报国,献身于改革开放和现代化建设的伟大事业,自觉地把自己的人生追求同祖国和民族的命运前途联系起来,在服务祖国服务人民的实践中发挥自己的聪明才智;就是要深入群众,投身实践,与工农相结合,与实践相结合,自觉到祖国和人民最需要的地方去,了解国情,经受锻炼,增长才干,开拓视野;就是要勤奋学习,善于创造,刻苦学习马克思主义基本理论,努力学习经济科技法律历史和其他方面的知识,用人类创造的优秀文明成果武装自己,提高创新能力,勇于创新实践;就是要锻炼品格,磨砺意志,树立正确的世界观、人生观、价值观,提高自身素质,完善人格品质,努力做中华民族美德的传承者,做体现时代进步要求的新道德规范的实践者,做新型人际关系和良好社会风尚的倡导者;就是要脚踏实地,艰苦奋斗,深刻认识我国的基本国情,继承和发扬艰苦奋斗的优良传统,任何时候都不懈怠创业精神,都不涣散奋斗意志,创造无愧于前辈、无愧于后辈的业绩。

  • 素质教育教师工作计划

    素质教育教师工作计划

    二、全面加强班级德育工作  1、德育工作要突出“三义、“五心”“共同”“五爱”教育,培养学生的优良品质。  2、要做到“两个寓于”“三个坚持”及“四个”原则,“五个结合”,全面提高学生思想道德素质,教育学生做一个全面发展,德、智、体、美、劳五育并举的合格学生。  3、要围绕“小学生规范养成教育”和“学困生转化策略”这两个主要德育研究课题,积极开展各类研究活动。

  • 关于校园弘扬爱国主义教育学习心得体会八篇

    关于校园弘扬爱国主义教育学习心得体会八篇

    肩负着实现中华民族伟大复兴的大家,要热爱祖国的大好河山,积极维护祖国的主权独立和领土完整,祖国的领土寸土不能丢,不能被分裂侵占;要热爱祖国的历史和文化,提高民族自尊心和自信心,为创造更加辉煌的民族文化而尽心尽力。今天,我国已步入新的历史时期,加入世贸组织使我国与世界各国的联系更加密切,机遇与挑战并存,大家将面临越来越多的新情况、新问题。推进我国改革开放的伟大事业,加快社会主义现代化建设的进程,更需要大家不断弘扬爱国主义的优良传统。只有这样,中华民族才能重振雄风,为人类文明与进步做出更大的贡献。

  • 个人民族团结教育学习心得体会八篇

    个人民族团结教育学习心得体会八篇

    我国作为一个多民族融合的国家,在其发展的过程中都必须考虑到社会各方面的问题。五十六个民族的大家庭需要我们每个人都有一颗宽容的心,用自己的包容心态去处理生活中的每一件事,去处理好各民族的关系。民族团结是一个国家能稳定及更好发展的前提条件,历史的镜子告诉我们,由于民族矛盾,民族歧视所引发的各民族之间的战争和冲突给与了我们的忠告;各民族之间的友好交流,相互学习则在一定程度上促进了民族关系的友好发展,友好交往成为贯穿历史的主流。事实证明中华民族作为世界上秀的民族之一,在社会主义现代化建设的今天取得如此重大的成就,正是因为我们的民族能紧紧的融合在一起,我们能处理好各民族之间的关系,是爱国力量的凝聚,是所有中华儿女的共同努力。

  • 关于个人学习红色文化教育心得体会八篇

    关于个人学习红色文化教育心得体会八篇

    古镇总有那么一股特殊魅力,时光在这里就这么一步一隐退,千年时光,依旧岁月静好。恩阳古镇,坐落于川东北地区的革命老区巴中市恩阳区,东临巴中市区。有28条古街,数百座明清古建筑。走在李先念、徐向前等老一辈无产阶段革命家们同样踏过足迹的古镇道路上,看着那一句句振奋人心的石刻标语和一处处红四方面军各个职能部门的遗址。我仿佛穿越回到了那个激情与信仰纯粹的年代,物质条件虽然很艰苦,但是因为共同的信仰,为了共同的目标,大家众志成城,艰苦奋斗。这也许就是红色教育的关键意义所在,那种历史的精神在古迹中能跨越时空的限制传递到现在的人身上。看着银行、法庭、学校、等各个地方,我知道无论战争与和平年代,制度的健全是至关重要的,依法治国是国家强大富强的保证。

  • 学习优秀十佳教师事迹心得体会八篇

    学习优秀十佳教师事迹心得体会八篇

    一、明确了阅读教学的方向,即课堂上要注重阅读教学的实效性。  多位专家老师都提到阅读教学要吃准目标,以课程标准为依据制定教学目标,以学生发展为本,使学生养成好的习惯,爱语文,爱阅读,有读书看报的习惯。这就要求教师要与内容分析式的语文课堂说再见,注重语文的工具性,要让教学真正服务于学生,使学生做到真读、真说、真写、真思考、真体验。关于教学目标,要做到“心中有标”(有课标、有教学目标)、“目中有人”(教师目中要有学生)、“心中有材”(心中装着教材),教学目标很重要,教师对每一课教学目标要明确,目标要定得准。目标确定后,整个教学设计就要围绕目标来进行,教学环节要体现目标,要围绕目标来实施,课堂上设计的问题要为目标服务,跟教学目标无关的不要设计。也就是说,课堂上我们该教的就教,不该教的坚决不教,我们的课堂也许就会变得简约、简朴、高效了

  • 关于小学教师家访后个人心得体会八篇

    关于小学教师家访后个人心得体会八篇

    第一,全面的家访,深入到每一个家庭细致了解,与家长学生面对面的交流,加强了社会,家庭,学生的联系,了解了家长的期望与要求。了解了学生的个性与想法,加强了师生感情,家访对以后的工作将起到积极的作用。  第二,全面的家访,了解了家长对子女的关切与期望,也了解了一些学生家庭的困境,增强了我们的责任感,也让我们更加热爱学生,热爱工作。  第三,交换访谈方式,为家访工作增加新的内涵。随着社会的发展,家访的'方式也随着改变。由于人们的职业特点、个人阅历、经济状况、文化素质、思想修养、性格脾气各不相同,学生家长可分为好多不同的类型。作为班主任应该具体问题具体分析,“到什么山唱什么歌”。

  • 关于小学教师不忘立德树人初心个人心得体会八篇

    关于小学教师不忘立德树人初心个人心得体会八篇

    作为教师,应该把自己的满腔热血投入到自己所热爱、做从事的教育事业,对自己的事业充满激情永无止境积极追求。俗话说“热爱是的老师”。热爱自己的教育事业会觉得其乐无穷,热爱自己的事业,就会多了更多的激情,少了许多牢骚和抱怨,热爱自己的教育事业再苦再累也无怨无悔,热爱自己的教育事业,就不会去计较得失。作为教师,应该有一颗博大的责任心,爱教育事业,最终落脚点在爱学生爱孩子。高尔基说过“谁爱孩子,孩子就爱谁”。只有爱孩子的人,才能教育好孩子,师爱是每一个教师的精神财富,也是人类的精神财富。教师要有无私的爱,以高尚的人格,渊博的知识,博大无私的爱去感染学生,成为学生心中的楷模。作为一名教师,我要拥有自己的信念,不断提高自身素质,用满腔的热忱把教育教学工作做好,更好的为学生服务,从而不负于人类灵魂的工程师这个光荣称号。

  • 关于大学生三下乡支教教育个人心得体会八篇

    关于大学生三下乡支教教育个人心得体会八篇

    我也是农村长大的孩子,在农村的日子就是我整个童年,虽然没有城市的繁荣和物质基础,但在农村我就是一只自由自在、欢乐无比的小鸟。走进白石小学,我仿佛又回到了我那个自由洒脱的童年。孩子们的欢声笑语,孩子们的调皮捣蛋,还有孩子们的聪明伶俐,无不让我感到开心和幸福。这种幸福感不像是亲人朋友给予的爱,而是把你带进你无法回到的过去的难忘时光。在我们安排的课程中,里面大多数是以第二课堂为主。为了吸引孩子们的注意和培养他们的兴趣,我们也是使出浑身解数,让课程变得有趣而不乏味。虽然经历了当老师的辛苦,但孩子们带给我们的欢乐和感动让我们觉得一切都值得。在我所参与的课堂中,我看到了“老师们”的窘迫,但孩子们却还是学得很认真笑得很开心。这就是我们现在无法相比的,孩子们的天真热情,单纯可爱,让我们这些最初不抱好想法的大学生感到温暖,很快,我们就融入其中了。

上一页123...313233343536373839404142下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!