二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
主要让学生明确以下观点:(1)自然生态系统是人类生存的基本环境;(2)人类活动的干扰正在全球范围内使生态系统偏离稳定状态;(3)人类生存与发展的命运就掌握在自己手中,但又受到自然规律的制约。反思总结,练习巩固:对本节知识点进行回顾,整理出简要的知识主线,为学生系统性复习巩固提供思路,课件展示老师课前收集准备的相关练习题,指导学生完成练习题,加学生深对本节知识的理解把握。结课布置作业:我们已经学习了生态系统的稳定性,那么,生态系统的各种功能之间的关系是怎样的呢?在下一节课我们一起来学习这一方面的内容。这节课后大家可以先预习这一部分,着重分析他们之间的关系。并完成本节的课后练习及课后延伸拓展作业。达到对本节内容知识的巩固提高和延展的目的。八、板书设计第五节生态系统的稳定性一、 生态系统的稳定性概念1.概念:生态系统所具有的保持或恢复自身结构和功能相对稳定的能力,
二、幼儿情况分析:小班孩子年龄小,他们必须在亲身体验、探索中去发现事物的特征。下雨天,他们常常爱往雨中跑:接着雨滴、踩着水坑等等。对雨是兴趣昂然、情有独钟。我们便可利用孩子这个兴趣点,又发生在孩子周边的生活经验开展有益的教育活动,从而真正体现《纲要》中提出的将教育生活化、生活教育化的精神。三、活动目标设计:1、引导幼儿用多种感官感受雨声、下雨时的景象,能大胆用语言表达自己的感受。2、培养幼儿对雨的喜爱之情及对自然现象的关注。四、设计思路:《纲要》在教育与发展之间坚持了“既要尊重幼儿的主体地位,又要发挥教师的主导作用”的观点。所以设计整个活动时,我注重强调将教师作为幼儿发展的引导者,支持幼儿的自主发展,在支持中进行有效引导。活动中,我通过几个问题的提出,引导孩子利用各种感官,去看雨、听雨、接雨、踩雨,启发他们在玩的过程中去充分感受、表达,实现师幼互动。
教育活动的目标是教育活动的起点和归宿,对活动起着导向作用。新《纲要》中指出:目标要注重全面性,要为幼儿一生的发展打好基础。根据我们青豆班孩子的实际情况和年龄特点,我确立了包含情感、态度、能力、知识、技能等方面的目标:1、通过玩玩、说说、做做的活动,初步感知面粉外部及内部的特性及各种类型的面粉制品。2、激发幼儿动手操作的兴趣,巩固捏、团、搓、压等技能培养幼儿发散性思维。3、激发幼儿喜欢吃面粉制品,及爱惜粮食的情感。根据目标,我把活动的重点定位于:初步感知面粉外部及各种类型的面粉制品。难点是:尝试用加水的方法把面粉变成面团感知面粉内部粘的特性。
中班幼儿随着年龄的增长,他们的思维已由直觉行动思维过渡到具体形象思维。他们喜欢观察喜欢表现,还喜欢自己动手操作。因此,我在本次活动中,我以幼儿自己操作自己体验的形式贯穿整个活动。设置适合中班年龄特点的“游戏”形式,把幼儿的注意力引到我的课题中。并在活动中,以教师自制的小树苗,为幼儿提供大量实物,让幼儿以操作贯穿始终。让幼儿在活动中玩,玩中说,玩中做,充分调动起他们学习的主动性、积极性与创造性,真正发挥教与学主动作用。目前,在科学教育方法中,应注意内容的兴趣性与生成性。使幼儿能对感兴趣的东西学得积极主动,效果好。孩子天生爱探索,对许多事物感兴趣。教师要把教育的出发点从教材转向幼儿,利用幼儿感兴趣的事物扩展成幼儿教学教育的内容,生成教育活动。因此,我在活动中,为幼儿准备了大量的废旧物,让幼儿在游戏和延伸活动中,通过自身的操作活动,达到玩中学,玩中做的目的。从而真正发挥了孩子的主体地位和教师的主导作用。在操作活动中,我还注意让幼儿在动手、动口的操作活动中达到活动的目标。
《电动玩具》是属于中班的科学活动,选自《多元整合幼儿园活动课程》,科学活动的主要目的是让幼儿能运用各种感观,动手动脑探究问题以及培养幼儿对周围事物现象感兴趣,有好奇心和求知欲。本次活动要求幼儿了解电池的作用以及培养其探索的兴趣,教材在编写上注意幼儿的实践操作能力,一般来说,一个四岁的孩子对理论知识较难明白,但如果经过自己动手操作得出的结论往往比老师的讲述要深刻得多,因此我把本次活动的目标定为:1、通过让幼儿动手操作去了解电池的作用并学会正确使用电池。2、在操作交流的过程中,让幼儿学会主动利用语言向人表达。3、培养幼儿积极探索事物的奥妙及时发现问题并寻求答案。前面两顶是本次活动的重点,后面一项是本活动的难点。
1拓展幼儿的想像力及对科学的探索能力。2尝试了解火箭升空的动力。3初步了解反作用力。首先,我说一下这节课的设计意图,在《交通工具博览会》主题活动中,我们班的孩子对于火箭都非常好奇,感兴趣,平时提到火箭孩子们也都很兴奋,他们虽然知道火箭,喜欢火箭,但是火箭对于他们来说具体是一个什么样的概念,他们还不是很了解。这也正是《纲要》中所提出的:从生活或媒体以及幼儿熟悉的科技成果入手,引导幼儿感受科学技术对生活的影响,培养他们对科学的兴趣,和对科学家的崇敬,所以我就抓住了孩子们的这个兴趣点,来设计了《火箭升空》这节课。
中班幼儿会对水本身感兴趣,但他们的兴趣只是停留在玩水上,科学活动《水不见了》的主要目的是让幼儿通过实验、操作自己探索“水不见了”的原因。培养幼儿对周围事物现象感兴趣,有好奇心和求知欲。本次活动要求幼儿了解生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。一般来说,孩子对理论知识较难明白,但如果经过自己动手操作得出的结论往往比老师的讲述要深刻得多,因此我们把本次活动的目标定为:1、通过动手操作发现生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。
实验时,幼儿是主体,教师主导。运用了观察法、引导法、亲身体验法、互相交流等方式方法去完成这四个实验。例如:作实验一时,教师提壶把水到入脸盆中,让幼儿观察水的流动;当盆中盛满水后继续到水,盆中的水会是什么样的?观察后让幼儿提出自己的见解,幼儿的主动性得到发挥。例如:做实验四:让幼儿亲自闻一闻水和醋,判断水是没有气味的。幼儿通过亲身体验更能掌握知识。这四个实验的过程针对幼儿的年龄特点做的设计。学习时,幼儿对水产生了浓厚的兴趣,在不自觉中完成了学习水的性质,
本活动让幼儿对实验中发生的现象产生兴趣,在实验中让幼儿反复玩,使幼儿在操作;探索的基础上获得经验,玻璃杯中没有空气,外面的空气就会把水压入杯中卡纸就被吸住,水不会倒出来。同时我在这课添加了用杯子去盖点燃的蜡烛,一下蜡烛就灭了。空气可以支持燃烧。这样吸引幼儿的注意,目的是通过丰富多彩的活动,为幼儿建立一个探索、尝试与交流的平台。,幼儿容易理解。在活动中我运用了启发提问法,观察发现法,引导发现法,实验操作法。幼儿通过猜谜语——寻找空气——试验操作的教学环节,让抽象的自然想象变得具体化了,课堂气氛很活跃,突出了活动的重难点,通过科学探索活动,丰富幼儿的生活经验,利用简单的科学实验使幼儿感知空气的存在,也是这次活动的亮点,让幼儿理解我们的生活离不开空气。
生活中,家长经常会带小朋友带森林中去玩,但幼儿对森力了解多少呢?知道多少呢?森林是世界上最主要的资源之一。全球资源日益减少,环境保护也日显紧迫,保护生态环境是我们每个人义不容辞的责任和义务。邓小平说过:“教育要从娃娃抓起”。而我们的孩子社会环保意识比较淡泊,所以让幼儿从小就养成不乱摘花、折树枝,懂得爱护树木、保护森林的情感。在他们幼小的心灵埋下保护环境的种子。而《纲要》中也明确指出:教育幼儿爱护动植物、关心周围环境、亲近大自然、珍惜自然资源,有初步的的环保意识。所以,我选择了关于“森林”主题中的“树”作为本次活动的内容,结合中班幼儿的爱玩、爱游戏的年龄特点,我设计了一次神奇的旅行让幼儿来玩,通过旅行一路上让幼儿认识了树的作用,了解了树的作用。
练习是发展智力,形成技能的重要手段。练习要紧紧围绕教学目标,突出重难点。一年级学生注意力集中时间短,在学习了新知识后,我安排了课中操,将练一练的第一题转换成手指操来调节学生学习的兴趣,并巩固5以内减法。做操结束以比赛抢答的形式完成练一练2——5题,既提高学生学习兴趣,又具有浓厚的学习氛围,提高了学习效率。组织小竞赛,使学生更积极地参与到学习中,只有让他们动手,动口,他们的注意力才会集中,让他们每个人都参与到学习中来,才能产生成功的喜悦,调动了学生的非智力因素。最后是学生们喜闻乐见的形式游戏“找朋友”让孩子们在玩玩,笑笑,算算中结束本节课。
1、教材来源:此活动选材来源于生活。我们都知道,家用电器无处不在,随处可见,取材也很方便,而且种类也很多,在教室里也有!电视,空调,vcd,录音机等等。然而幼儿虽然知道家用电器,经常使用它,但对家用电器并不太了解,在日常生活中经常看大人使用享受,会看电视玩电脑。因此,有必要使幼儿形成对家用电器正确的认识,正确使用操作,用电的安全常识真的很重要!就如《纲要》中所说,“既符合幼儿的现实需要,又有利于其长远发展;既贴近幼儿的生活,选择感兴趣的事物或问题,又有助于拓展幼儿的经验和视野”。因此,此活动来源于生活,又能服务于幼儿的生活。2、目标定位:活动的目标是教育活动的起点和归宿,对活动起着导向作用。根据中班幼儿年龄特点及实际情况以及布卢姆的《教育目标分类学》为依据,确立了认知、能力、情感方面的目标,其中既有独立表达的成份,又有相互融合的一面。
中班科学活动《吹泡泡》我是用巧妙的方法引导幼儿生成和建构的主题。在幼儿“玩”的过程中,我以玩伴的身份参与到幼儿的活动中,借助“你们发现吹的泡泡有什么秘密”这个开放性的问题,与幼儿有效地互动自然生成了这个主题。目的在于保持幼儿们的好奇心,激发他们的探究热情,使他们从小就善于观察和发现;让幼儿们真正理解科学、热爱科学,达到真正有价值、有意义的学习目的。根据中班幼儿的年龄特点,和建构知识的能力我为本次活动制定了如下三条目标:1、运用各种感官感知泡泡的特性,了解不同形状的工具吹出的泡泡都是圆的。2、尝试运用记录的方式表达、交流探索的过程和结果,发展学习的自主性。3、在探究活动过程中,体验发现的乐趣。此次活动设计的最终目的是激发幼儿更深层的探究“泡泡特性以及不同形状的工具吹出的泡泡都是圆的”欲望。因此我将本次活动的重点确定为“运用各种感官感知泡泡的特性,了解不同形状的工具吹出的泡泡都是圆的”。将“尝试运用记录的方式表达、交流探索的过程和结果,发展学习的自主性”确定为本次活动的难点。