水陆草木之花,可爱者甚蕃。晋陶渊明独爱菊。自李唐来,世人盛爱牡丹。予独爱莲之出淤泥而不染,濯清涟而不妖;中通外直,不蔓不枝;香远益清,亭亭净植,可远观而不可亵玩焉。
伯牙善鼓琴,钟子期善听。伯牙鼓琴,志①在高山,钟子期曰:“善哉,峨峨②兮若泰山!”志在流水,钟子期曰:“善哉,洋洋③兮若江河!”伯牙所念,钟子期必得之。
柯尔比找到了全是最著名的音乐辅导老师玛丽,玛丽老师感动地说:“我去,我去!”⑧在玛丽老师娴熟的指导下,孩子们每天练习唱歌,当然是在伊丽莎白接受治疗的时候。
女儿没有见过她妈妈,在她出生的那一刻,她的妈妈便因为难产离开了我们。仿佛一切都有预感一样,在妻子的日记里,我看到了她写给自己未出生孩子的信。
金风换成了北风,秋去冬来了。冬天刚刚冒了个头,落了一场初雪,我满庭斗艳争娇的芳菲,顿然失色,鲜红的老来娇,还有各色的傲霜菊花,一夜全白了头。两棵丁香,叶子簌簌辞柯了,像一声声年华消失的感叹。
我走过湖畔山林间的小路,山林中和小路上只有我;林鸟尚未归巢,松涛也因无风而暂时息怒……突然间听到自己的身后有脚步声,这声音不紧不慢,亦步亦趋,紧紧地跟随着我。我暗自吃惊,害怕在荒无人烟的丛林间碰上了剪径。回过头来一看:什么也没有,那声音来自于自己的脚步。
当我见到毕业生名册上你们的名字时,我为你们每一位(甲),我(乙)你们离校后,都能过“不负此生”的生活。首先,我希望你们能简朴地生活。容我提醒各位一句:快乐与金钱和物质的丰盛并无必然联系。一个温馨的家、简单的衣着、健康的饮食,就是乐之所在。漫无止境地追求奢华,远不如简朴生活那样能带给你幸福和快乐。其次,我希望你们能过高尚的生活。我们的社会有很多阴暗面:不公、剥削、诈骗等等。我吁请大家,务必要庄敬自强,公平待人,不可欺侮弱势的人,也不可做损人或损己的亊。高尚的生活是对一己的良知无悔,维护正义,亊亊均以道德为依归。这样高尚地生活,你们必有所得。
在收藏成为时尚的今天,年画也以其浓郁的装饰性和观赏性,成为收藏者们趋之若鹜的热门藏品。在我国传统年画中,以下五类最值得收藏:一为神像,以门神最为常见,还有财神、灶王、关王、八仙等;二为吉祥图案,如状元及第、吉庆有余、连生贵子、群仙祝寿等;三为历史人物及故事,如桃园结义、文姬归汉、昭君出塞、穆桂英挂帅等;四为戏曲故事,如《三国演义》中的空城计、群英会,《西厢记》中的红娘传书、花园相会等;五为市井风俗,如春游图、赛龙舟、摇钱树、聚宝盆、老鼠娶亲、鲤鱼跃龙门等。这些年画题材丰富,画面或质朴可爱或精致生动,或粗犷豪放或雍容典雅,彰显着我国民间传统文化的博大精深。
(二)紧盯人员密集场所,坚决遏制火灾易发态势。深刻汲取北京丰台长峰医院、浙江金华企业厂房火灾事故教训,坚持“哪类场所火灾多发就整治哪类场所、什么问题突出就整治什么问题”。继续做好火灾防控工作,以防范火灾、爆炸和防止踩踏为重点,紧盯水利办公区域、职工食堂、施工区域、集体宿舍、水利工程管理用房等场所,集中排查整治违规电气焊、违规动火、违规使用易燃可燃材料装修装饰、违章动火作业、锁闭安全出口、占用堵塞消防通道、消防设施损坏缺失等方面存在的重大隐患。(三)做好安全度汛工作,全面整治各类安全隐患。加强地质灾害防治,受到山体滑坡、垮塌和泥石流威胁的施工工地、生产厂房和居民区,重点加强监测监控,采取针对性防范措施。强化建设施工项目安全检查,遇雷雨、大风等极端天气时,按规定立即停止室外高空作业,落实塔吊等大型起重机械抗风防滑措施。切实做好汛期安全隐患排查治理工作,确保汛期安全生产形势稳定。
二、禁止三乱督查 校长每周督查一次分管德育校长、分管校长每周督查一次德育主任,德育主任每周督查一次班主任,严禁乱收费、乱罚款、乱订资料。 三、安全工作督查 校长每周督查分管安全工作校长一次,分管校长每周督查一次所分管部门的安全工作,负责安全工作的部门每周督查安全工作一次。德育处负责学生安全教育,督促班主任作好安全教育,门卫教育等,总务处负责校舍安全、食品卫生安全等,做到警钟长鸣。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
“用计算器计算”是江苏国标版四年级上册数学第十一单元的教学内容这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习使学生可以借助计算器进行较大数目的四则运算并借助计算器来探索有关规律有利于帮助学生形成初步的探索和解决问题的能力。 本单元内容分两段安排,第一段先认识计算器了解计算器的基本功能和操作方法再学习用计算器进行四则计算的方法。第二段教学用计算器进行两步混合运算并安排了练习十。教材在“想想做做”和练习十中还编排了一些探索数学规律的趣题并通过“你知道吗”介绍“改错键”等常用的功能键以及有关计算工具发展的历史让学生了解计算工具的演变过程感受人类科技的进步与发展。最后教材还安排了实践活动《一亿有多大》帮助学生形成良好的数感。本单元分四课时完成今天我说的是第一课时。
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。