《乌鸦与狐狸》选自世界图书出版公司2012年12月第1版《幼儿园整合性家园共育资源包?成长快乐》中的快乐阅读1,属于幼儿故事教学。根据教材特点,我将活动目标定为:(1)会分析画面内容,能较合理地猜测故事情节;能在倾听故事的基础上,用自己的语言完整叙述故事内容。(2)方法与途径:通过与同伴的合作游戏,模仿、表演乌鸦和狐狸的不同语言、动作、表情,理解故事内容。(3)情感与评价:学会正确认识自己,懂得不轻易相信别人;体验合作游戏及语言表达的乐趣。(4)教学手段运用:活动中主要运用多媒体课件进行引导、鼓励,以游戏为载体,让幼儿在学中玩、玩中学。我将活动重点与难点定为:(1)活动重点:会分析画面内容,能较合理地猜测故事情节;能在倾听故事的基础上,用自己的语言完整叙述故事内容。(2)活动难点:模仿、表演乌鸦和狐狸的不同语言、动作、表情,理解故事内容。
二、说教材在一次户外活动中,孩子们发现了阳光下各种不同事物的影子并加以想象与讨论。“影子”天天伴随于我们的身边,它蕴含着许多教育教学的价值点,于是我从孩子们的兴趣点出发,设计了以“影子”为表现载体的一节美术活动,大班美术活动《影子变形记》玩美活动就产生了。三、说活动目标根据本次活动的设计意图和幼儿的年龄特征以及布鲁姆的三维目标,我将从认知、技能、情感三方面提出本次目标:1.在游戏中发现、欣赏各种影子的造型,感知影子造型变化的美与趣。2.能大胆描画出影子造型并能运用合理的构图、丰富的想象进行添加和组合。3.充分体验影子变形及添画的乐趣,享受成功的快乐。
1、让幼儿在音乐欣赏中去感受歌曲雄壮、有力、气势磅礴的美。2、让幼儿在豪迈激越的音乐中想象歌曲所表现的意境,用语言、表情、动作表现出来。3、激发幼儿从小热爱祖国,反对侵略,有?I卫祖国尊严的情感。目标1和3是本活动重点,目标2是本活动的难点。活动前我作了以下准备:1、课前认识黄河和观看抗日战争记录片。2、歌曲《保卫黄河》的MTV和磁带一盘。3、红旗、大刀、长矛、木枪等道具。本次活动我主要用了直观教学法和情景表演法,分四个环节来完成。首先幼儿随《儿童团歌》的音乐踏步入场,营造本次活动的氛围,教师简单介绍歌曲的历史背景及词作家,提出欣赏要求后,放磁带整体欣赏歌曲2遍,然后让幼儿讨论:这首歌曲听起来怎么样,你好像看到了什么?让幼儿初步感受歌曲雄壮有力、气势磅礴的美。然后进入活动的第二环节:分段欣赏,深入的理解与感受。首先欣赏歌曲的前面部分,听听、想想、说说、让幼儿一边欣赏一边想象歌曲所表现的意
一、学情分析学生进入小学五年级,开始了小学高年级阶段的学习。随着社会生活范围的不断扩大,学生会受到烟酒与毒品的诱惑,如果不能及时认清烟酒, 毒品的危害,提高自我保护的能力,他们的健康成长也会受到威胁。主动拒绝烟酒与毒品,帮助学生认识到烟酒会危害我们的身心健康,吸毒会让 我们陷入危险的泥潭,只有认清危害,并坚决的拒绝他们的诱惑,学会自 我保护,我们才能健康的成长。二、教材分析本课是第一单元“面对成长中的新问题”的第3课,教材从学生已有生活经验出发,教材设计了分享展示烟酒危害资料、观点大碰撞活动、法治宣传、讲故事、阅读启示、续写对策、法律链接、完善操作手册等活动园,安排了阅读角和相关法律法规、知识链接,通过这些环节引导学生充分认识到烟酒毒品等的危害性,让学生学会拒绝烟酒毒品等危害的方法,从而促进学生健康成长。本课包括“烟酒有危害”、“毒品更危险”和“拒 绝危害有方法”三部分内容。分两课时教学。三、教学目标1. 知道吸烟与饮酒危害青少年的身心健康,诱发不良行为,甚至导致违法犯罪。知道毒品是人类共同的敌人,吸毒是违法行为。
一、说设计思路《鹅大哥出门》这个故事选用了小朋友生活中比较熟悉并喜欢的大白鹅为主要角色,讲述了一只大白鹅骄傲不懂礼貌的故事,特别是鹅大哥之前“红红的帽子,雪白的羽毛”和之后的“一只大黑鹅”对比这个情节既让人觉得有趣又符合幼儿的年龄特点,在生活中我们常常会看到一些自高自大的人,特别是现在独生子女较多,比较以我为中心,我觉得这个故事既符合幼儿的年龄特点又符合孩子们现在的心理而且也符合<纲要>中的教育要求,即教育幼儿使用礼貌语言与人交往,养成文明交往的习惯.二、说活动目标活动目标是教学活动的起点和归宿,对教育活动起导向作用。<纲要>语言领域中指出:发展幼儿语言的关键是创设一个是他们想说,敢说,喜欢说的环境。在新《纲要》中,活动教育提出了“幼儿园的教育活动,应以教师带领幼儿共同创设适应幼儿年龄特点的,丰富多彩的,引导幼儿在轻松愉快的心理氛围中,积极主动地去体验,实践、创造,促进幼儿身心和谐发展的一种教育活动。”因此,在整个活动中都以幼儿的自主参与活动为主,教师在活动中起一个引导者和支持者的作用,和孩子共同活动感受,我从认知、能力和情感三方面提出了本次活动的目标。1. 认知上:使幼儿在理解故事内容的基础上,初步学会复述故事,丰富词汇“神气、乐滋滋”2. 能力上:积极参与故事情节的讨论,愿意大胆表达自己的想法。3. 情感上:懂得不能骄傲,不能欺负弱小的道理体验骄傲自大带来的烦恼根据目标,在活动中,我把在游戏情节中理解故事内容,懂得不能骄傲不欺负弱小的道理设为教学重点,根据大班幼儿的语言发展情况,用完整的语言复述故事设为难点。三、说活动准备为了此次活动的组织符合幼儿的学习方式和特点,注重综合性、趣味性、活动性的协调统
一、说主题为了教育引导少先队员牢记和理解社会主义核心价值观“爱国”两个字的要求,接受爱国主义的洗礼,弘扬民族精神,在中华民族传统佳节---清明节来临之际,结合五年级德育课程中第三单元“不能忘记历史”的内容,我设计了以“追思先烈魂,弘扬爱国情”为主题的少先队活动课。本次少先队活动课要达到两个目标:1、 是利用观、唱、演、讲等多种形式缅怀革命先烈,追忆他们所体现的民族精神。2、 激励学生努力学习,严于律己,努力践行社会主义核心价值观重点:缅怀革命先烈,感悟民族精神难点:领悟爱国内涵二、说设想引导队员们在缅怀革命先烈的活动中,领悟爱国的内涵,接受爱国的洗礼,弘扬爱国情怀,落实爱国行动。三、说辅导活动前1、 组织班、队委干部对本次活动进行策划,确定好活动内容及环节。2、 辅导少先队员进行分组,一共分为六个小组,分工:选定好主持人,本次活动负责人,各小组负责人,辅导员为队员们提供必要的帮助,支持,指导3、 各小队确定好汇报方式
你能不能用你的本领把这山村美景表达出来呢? 老师请画画的小朋友在这花丛里,写诗的在小山坡上……….. 四、完美结课: 小朋友玩的高兴吗?好我们一起回家啦!(播放《郊游》)。 教学反思: 启发学生“你都想到了什么?”从而让学生展开丰富的想象,经过教师的简单小结使学生了解了牧童的生活和放牧时的心情,为学唱歌曲《放牛歌》做情感铺垫。 接下来的“体验理解”环节还是以激发学生兴趣为主,从猜小牧童的“宝贝”(笛子)模仿小牧童吹笛子的动作,到学吹笛子的有节奏的嘀嘀声XXXXXX,到有节奏的模仿小黄牛的叫声X-,我都是在让学生从间奏入手的,目的:一是引导学生会听音乐,能听出哪是间奏;二是让学生充分感受歌曲的旋律,熟悉歌曲;三是培养学生[此文转于斐斐课件园 FFKJ.Net]节奏感,知道笛声和小黄牛的叫声表示的节奏是什么,对两个声部的节奏训练进行一次渗透和尝试。
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
【类型二】 根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。