提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

好玩的磁铁教案教学设计

  • 中班数学:巩固4以内数的形成课件教案

    中班数学:巩固4以内数的形成课件教案

    2)、能正确认读数字1、2、3、4。 活动准备:教师幼儿每人一套1~4的数字卡,四个指偶;1~4的圆点卡片每人一套. 活动过程:1)、引起兴趣,导入课题:出示指偶,引起兴趣。 2)、有具体形象到抽象训练:让幼儿操作指偶,复习4以内数的形成,正确认读数字1、2、3、4。 A 、让幼儿出示1个指偶,启发幼儿说出1个指偶的数量用数字“1”来表示,老师出示数字“1”,让幼儿说出像什么并认读。

  • 中班数学:复习6以内的数数课件教案

    中班数学:复习6以内的数数课件教案

    活动准备: 1、房子6幢。 2、动物照片拼图每组一盒 3、1---6的数卡人手一份。 活动过程: 一、找房子 1、师:花园里,有许多漂亮的房子,我带你们去看一看。(出示教具)数一下,这里共有几幢房子?(6幢,幼儿口手一致点数) 2、师:这些房子都是小动物住的,它们告诉我,每幢房子的门里面都有一个数字,让我们来猜一猜,是什么数? a、红房子里是个比2大1的数,那是几?(3)猜出后请幼儿找出数字,放在板上,验证。 b、绿房子里是1、2、3、4、5、6里面最小的一个数,那是几?(1)方法同上 c、咖啡色房子里是排在4后面的一个数,它是几?(5) d、蓝房子里的数是1、2、3、4、5、6里面最大的一个数,那是几?(6)方法同上 e、1到6这些数里面,还有哪两个数没有猜过?(4和2)紫色房子里的数比黄房子大,想一想,它该是数字几?(4) f、剩下黄房子里的数又是几啊?(2)

  • 大班数学活动有趣的纸盒课件教案

    大班数学活动有趣的纸盒课件教案

    2、 培养幼儿动手动脑的能力。活动准备:1、 幼儿每人从家中带来纸盒。2、 制作纸盒的各种材料:废旧纸盒、挂历纸、水彩笔、剪刀、夹子、双面胶等。活动过程:一、 让幼儿观察自己带来的纸盒,进一步感知立方体。1、小朋友今天从家中带来了不同的纸盒,请你仔细看一看,你的纸盒是什么形状的?(是个长方体)

  • 大班数学活动:身体上的单双数课件教案

    大班数学活动:身体上的单双数课件教案

    【活动准备】1、图片十张,1—10的数字卡一套,笔一支。2、箱子一个,小布袋若干。(里面各种物品,数量1—10 不等)【活动过程】  一、教师组织教学,用说梦引起课题,引起幼儿的兴趣。  二、1、教师展示十张图片,集体点数每张图片上的图画,并贴上相应的数字卡片。2、请几名幼儿上来给图画圈,要求两个两个圈在一起,重点让幼儿会两个两个圈在一起,边圈边让幼儿数数。3、引导幼儿观察已画过的图片,是不是每张图片上的画都被圈起来了?那几张图片是全圈完的?让幼儿说一说是哪几个数字?没有圈完的是那几张图片?是哪几个数字?4、请几名幼儿回答后,那几个是全圈完的,那几个是没圈完的,全圈完的2、4、6、8、10、是双数,没圈完的1、3、5、7、9、是单数。  教师小结:两个两个全部数完的是双数,2、4、6、8、10是双数;1、3、5、7、9是单数。请幼儿说一说1—10数字中的双数有哪些,单数有哪些?

  • 大班数学活动:认识10以内的单双数课件教案

    大班数学活动:认识10以内的单双数课件教案

    活动目标:1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数;2、培养幼儿从身边事物中发现单双数的能力;3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。活动准备:2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料活动过程:一、情景导入,引起兴趣瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?二、在购物游戏中体验、感知单双数1、教师讲解游戏规则。数一数,你有几元钱?圈一圈,你能买几样东西?2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。

  • 大班数学活动:有趣的排序课件教案

    大班数学活动:有趣的排序课件教案

    活动目标:1、 引导幼儿学习自由排序,让幼儿在自由的探索活动中,尝试和发现不同的排序方法,并体验排序活动的乐趣。2、 发展幼儿的发散性思维,培养幼儿的探索精神。3、 了解排序与我们的生活密切相关,并学习将排序的知识运用到日常生活中。活动准备:排序材料:积木、几何图形、吸管、数字卡、玩具等等。日常用品:有关排序图案的衣服、杯子、帽子、项链、毛巾、建筑物等等。活动过程:一、玩“给物品娃娃排队”的游戏,让幼儿按自己的兴趣和想象来自由探索,尝试不同的排序方法。1、 教师向 幼儿介绍各种物品娃娃,并请幼儿给物品娃娃玩排队的游戏。2、 幼儿自己选择物品娃娃进行排队,自由探索排序的方法。

  • 大班数学《认识2、3的相邻数》课件教案

    大班数学《认识2、3的相邻数》课件教案

    活动准备: 提供三种颜色不同的瓶盖个三个,每人一套1—4的数字卡片。活动过程:1、 分别取三种颜色不同的瓶盖个三个,一一对应排成三横排,中间一排的瓶盖不动,让三排瓶盖变得一排比一排多一个,讨论如何才能做到。2、 找出相应的数字卡片摆在瓶盖的左边,讨论:比3少1的数是几,应排在哪里;比3多1的数是几,应该排在哪里。

  • 北师大初中八年级数学下册分式的乘除法教案

    北师大初中八年级数学下册分式的乘除法教案

    通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3,整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R-d)3R3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.

  • 北师大初中数学九年级上册比例的性质2教案

    北师大初中数学九年级上册比例的性质2教案

    请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2

  • 北师大初中七年级数学下册积的乘方教案

    北师大初中七年级数学下册积的乘方教案

    【类型一】 逆用积的乘方进行简便运算计算:(23)2014×(32)2015.解析:将(32)2015转化为(32)2014×32,再逆用积的乘方公式进行计算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法总结:对公式an·bn=(ab)n要灵活运用,对于不符合公式的形式,要通过恒等变形转化为公式的形式,运用此公式可进行简便运算.【类型二】 逆用积的乘方比较数的大小试比较大小:213×310与210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数幂是解答此类问题的关键.三、板书设计1.积的乘方法则:积的乘方等于各因式乘方的积.即(ab)n=anbn(n是正整数).2.积的乘方的运用在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:an·bn=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-an(n为正整数);当n为偶数时,(-a)n=an(n为正整数)

  • 北师大初中七年级数学下册频率的稳定性教案

    北师大初中七年级数学下册频率的稳定性教案

    解析:(1)根据表中信息,用优等品频数m除以抽取的篮球数n即可;(2)根据表中数据,优等品频率为0.94,0.95,0.93,0.94,0.94,稳定在0.94左右,即可估计这批篮球优等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)这批篮球优等品的概率估计值是0.94.三、板书设计1.频率及其稳定性:在大量重复试验的情况下,事件的频率会呈现稳定性,即频率会在一个常数附近摆动.随着试验次数的增加,摆动的幅度有越来越小的趋势.2.用频率估计概率:一般地,在大量重复实验下,随机事件A发生的频率会稳定到某一个常数p,于是,我们用p这个常数表示随机事件A发生的概率,即P(A)=p.教学过程中,学生通过对比频率与概率的区别,体会到两者间的联系,从而运用其解决实际生活中遇到的问题,使学生感受到数学与生活的紧密联系

  • 北师大初中数学九年级上册比例的性质1教案

    北师大初中数学九年级上册比例的性质1教案

    若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0),   那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.

  • 北师大初中八年级数学下册平移的认识教案

    北师大初中八年级数学下册平移的认识教案

    方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.

  • 北师大初中数学九年级上册矩形的性质1教案

    北师大初中数学九年级上册矩形的性质1教案

    解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形    叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.

  • 北师大初中数学九年级上册矩形的判定2教案

    北师大初中数学九年级上册矩形的判定2教案

    2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)

  • 北师大初中数学九年级上册矩形的判定1教案

    北师大初中数学九年级上册矩形的判定1教案

    在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.

  • 北师大初中数学九年级上册菱形的性质2教案

    北师大初中数学九年级上册菱形的性质2教案

    1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积

  • 北师大初中数学九年级上册菱形的判定2教案

    北师大初中数学九年级上册菱形的判定2教案

    方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形

  • 北师大初中数学九年级上册菱形的判定1教案

    北师大初中数学九年级上册菱形的判定1教案

    (1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

  • 北师大初中九年级数学下册圆的对称性教案

    北师大初中九年级数学下册圆的对称性教案

    我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.

上一页123...44454647484950
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。