2、操作目标:能用棋子统计不同靴子的数量,并比较数目的多少。3.能力目标:发展幼儿的思维有序性。活动准备:1、各种鞋的标志2、统计表、棋盘、棋子活动重点:学习按物品的某一特征进行分类。活动难点:学会用自己的方式统计鞋子的数量,进行数量的比较。
活动过程:1 讲述故事《威威爱大怪手》。 教师:小朋友,今天老师给你们带来了一共好听的故事,你们想不想听呀?(教师讲述故事) 提问:故事里的大怪手车到底是什么车?(挖土车) 除了故事里提到的车,你还认识什么车?2 教师和小朋友们玩“猜谜”的游戏。“小朋友们都很聪明,认识各种各样的车。现在老师要考考你们,我们来玩一个猜谜的游戏。请你听清楚老师出的题目,然后回答这是什么车?明白了吗?好,现在请听题。”--下雨车,下雨车,边下雨来边唱歌。请问这是什么车?(洒水车)--大嘴车,大嘴车,边吃垃圾边唱歌。请问这是什么车?(垃圾车)--长长一条龙,走路轰隆隆,跨河又钻洞,呜呜向前冲, 载客又运货,运输立大功。请问这是什么车?(火车)--用脚踩,不需要用汽油的车。(自行车) --要排队等,一个一个投币才能坐的车。(公共汽车)--搬家时会用到的车子。(卡车)--你只要上车,告诉司机要到哪里,司机就会打表并送你到目的地。(出租车)--失火的时候一定需要它帮忙。(消防车)--抓坏人的时候,警察就会开着它出来。(警车)--游览旅行时会坐什么车?(游览车)--可以救人的车子。(救护车、警车、消防车。)--拨打电话119,开来的是什么车?--拨打120,开来的是什么车?--那110呢?
在教授第一段歌曲的过程中我先让幼儿通过观看课件,对雪花有一个比较直观的认识后,引导幼儿逐句的学习歌词,(课件的四个画面分别表现了四句歌词的内容),再引导幼儿将歌词串起来有一个完整的印象并能有节奏的朗诵出来。歌词掌握之后通过欣赏歌曲、教师范唱、整首教授(幼儿表演式和师生问答式)等多种方法和形式掌握歌曲第一段的演唱。第一段的歌曲掌握较好的基础上,用魔棒引出创编的内容:魔棒想考一考小朋友:“冬天天上会飘雪花,那么其他的季节天上还会下什么呢?”在引导幼儿回忆有关雨滴的记忆,让幼儿对照雪花的歌词创编雨滴,重点让幼儿表现小雨滴落下来,用动作表现出来。难点(是初步感受乐曲旋律,了解上行音和下行音的旋律特点)的解决也主要依靠课件中比较直观、形象的图谱配合教师的无伴奏清唱,让幼儿更清晰、明了的掌握上行音、下行音的旋律特点。
全球资源日益减少,环境保护也日显紧迫,保护生态环境是我们每个人义不容辞的责任和义务。而我们的孩子生活无忧,社会环保意识淡泊,经常做出乱摘花草,随意攀登树木等行为,这些看似毫不在意的事情,却给我们敲响了警钟,不得不令我们幼教工作者产生重重的忧患。而《纲要》中也明确指出:教育幼儿爱护动植物、关心周围环境、亲近大自然、珍惜自然资源,有初步的环保意识。所以对幼儿进行认识和保护生态环境的教育是一件刻不容缓的事情。 树,在幼儿生活中随处可触,但幼儿对树的认识也只是停留在表面,很少有幼儿进一步去理解树和人们的生活是息息相关的,植树造林对提高人们生活质量的益处。因此,对“树”的深层次的探究已是一个迫不及待的工作了。故而,我为大班幼儿设计了一堂社会环保课----《植树造林》。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
安全工作是学校首要工作,我校始终高度重视这一工作。学校建立、健全了各种安全制度,成立了安全工作领导小组,加强对全校师生进行经常性的和重点时段的安全教育和安全督查,保证学校的安全工作有组织、有领导、有制度、有落实。但是,不可否认,尽管学校和班主任老师通过各种形式对同学们进行了多方面的安全、法制和纪律教育,采取了各种防范措施,可仍有部分同学无视学校有关规定,做出了一些有可能伤及自身和伤及他人的违纪行为,在安全方面确实还存在许多问题和隐患,例如往返学校途中不遵守交通规则,马路上并行,不注意观察道路交通状况;课间在楼上楼下追逐疯打;自行车不上锁,防盗意识较差;校园内仍然存在骑车现象;使用体育运动器械时违章操作;放学后在校内外逗留时间过长;同学之间发生矛盾纠纷后拉帮结伙通过拳脚打架来解决;节假日、双休日结伙闲逛、惹是生非;个别同学进入网吧、游戏厅,同社会上闲杂人员来往等等。这都是我们目前在安全方面最需要注意和防范的重点。
老师们、同学们:大家好!我们附校已经创建了XX市"绿色学校",所谓"绿色学校"就是指我们校园里的每一位师生都有环保意识,这需要我们师生一起努力,从我做起,从身边的小事做起,从力所能及的事情做起。参与环保活动,培养环保素养,人人争做环保卫士.不要把它想象成很大的事情,环保就在我们身边.当你捡起别人掉下的一张纸时,你就已经做成了一件环保的事情;当你记得及时关灯,不浪费用电;当你用好水笼头能及时关掉,当你下课,活动时能做到有秩序,有克制,而不是高声喧哗;你就已经在做着环保卫士应该做的事情了.诸如此类的太多太多小事,我们其实都能做到,但可能我们同学以前都是没有去仔细面对和想过的.同学们,你有过为我们附校创建省“绿色学校”的想法吗?当然,创"绿色学校",争做环保卫士,我们的目光还要看得更远.一节小小的电池就可以污染一个人一辈子所需要的水;一棵树一年产生的氧气可以让一个人受用一辈子,一只塑料袋需要经过400年才可能被完全分解掉;对于这些环保的知识,你了解吗 ?
1 导入歌曲2 熟悉旋律“请小朋友闭上眼睛听歌曲,边听边想,从这首歌曲中,你听到了什么?想到了什么?感受到了什么?”“听了这首歌,你有什么感觉?”请小朋友仔细听,仔细感受,把你听到的节奏用手拍出来。请小朋友用手拍腿,随音乐旋律拍出节奏来。3 熟悉歌词老师清唱歌曲,幼儿听后讲述歌曲的内容请小朋友认真听老师唱一次,听听歌曲里唱了些什么?看动画,记忆歌词(请小朋友看《小雨沙沙沙》的动画片,请你仔细的听歌词)春雨发出什么样的声音?——沙沙沙小雨在哪里?————花园里(鱼池里,田野里)花儿快乐得怎么样?——-张嘴巴(摇尾巴,向上爬)看图谱师:最开始是小雨落在花园里,花儿乐得张嘴巴然后是小雨落在鱼池里,鱼儿乐得摇尾巴。最后是是小雨落在田野里,苗儿乐得向上爬。出示图谱,按歌曲图谱练唱歌词,(放伴奏录音)老师示范,幼儿唱。“请小朋友看图谱,一起来唱这首歌。”4 幼儿练唱歌曲播放动画,集体演唱。随录音演唱请小朋友一边唱,一边用你喜欢的动作来表演
(一) 设计意图:本活动意在通过师幼互动,运用形象生动的音乐图谱,以鼓励、赏识的方法来调动幼儿积极性、主动性和创造性,使幼儿愉快地投入到整个活动中。这首歌的旋律生动活泼、节奏感强,内容浅显生动,是幼儿学习演唱歌曲的好教材。(二)说活动目标: 当代教育论认为教育过程就是师生交往积极互动,共同发展的过程。师幼互动是本活动的教法学法的最大特点,一方面,幼儿是音乐活动的探索者、学习者和创造者。另一方面,教师是幼儿主动学习的引导者、支持者与促进者,也是幼儿音乐表现和艺术创造活动的发现者、欣赏者、学习者。教师自觉不自觉地把暗含的期望传递给幼儿,从而有效地激发幼儿音乐学习的动机和探索的兴趣,实现音乐教育对幼儿情感、个性、社会性的发展作用。为此,我为本次活动确定了以下的目标
近代学习心理学的信息加工理论认为:熟悉程度过低的刺激,不易激发起主动探究、操作的行为。因此,在本次活动的选材和设计上,都努力确保幼儿对乐曲有充分的冗余度(熟悉程度)。《摇篮曲》是幼儿所熟悉的,小班时也欣赏过与本次活动选用的教材所类似的摇篮曲。德国作曲家勃拉姆斯于1868年创作的《摇篮曲》,乐曲采用大调式,3/4拍子,简单的主题充满了温和安详的情绪,表现了母亲对孩子深深的爱。《威风凛凛进行曲》这首进行曲因为它非常形象,非常有感染力,所以现在已经为许多国家军队仪式所采用。乐曲速度较快,是大调式2/4拍。它分三个部分,表现了热烈欢快的气氛和辉煌、庄严、壮丽的场面。“进行曲”音乐形象鲜明,节奏明显,在日常生活中幼儿也有精神饱满地列队、踏步、做操、开运动会等的体会,同时也具有一定的生活经验和感受音乐的经验,遵循以幼儿经验为基本出发点。
今天,我说课的内容是中班语言:童话故事《小花籽找快乐》。选自山东省幼儿园教材《语言》第22页。童话故事是儿童文学的一种体裁,是富有浓郁幻想的虚构故事。它以现实生活为基础,通过丰富的想象、幻想,把故事中的事物描绘的有思想、有感情,能像人一样说话,富有生命力,并编制生动的情节来反映生活。童话的语言通俗易懂,情节简单,符合幼儿的心理状态和认识水平,富有教育意义,易于幼儿接受。《小花籽找快乐》是一篇充满浓郁儿童情趣的童话故事,它采用了拟人的手法,把“小花籽”寻找快乐的经过描写的形象逼真。故事中生动、有趣的角色对话,使幼儿充分感受作品的思想感情,懂得为大家服务才是真正的快乐,提高幼儿的语言表达能力,培养幼儿对文学作品的兴趣,是一篇具有深刻教育意义的好教材。
这个故事叙述了老鼠三兄弟看到鼠妹妹穿着破衣服就悄悄地让裁缝把漂亮的布做成了女式服装这样一件事,非常温馨和感人。故事所表达的精神对道德意识还往往处于自我中心的当今的独生子女应该具有较强的心灵震动。这一形象对中班幼儿来讲是能够接受和体验的,有利于培养他们正确的道德态度和良好的道德情感。容易引起幼儿的学习兴趣,又可以扩展孩子的词汇量。其二是现在的孩子由于受生活环境限制,缺乏与周围人相处的经验,普遍存在对周围事物缺乏感情的行为,所以这一内容既符合中班幼儿的年龄特点,又符合孩子的现实需要。整篇童话语言通俗,主题单纯,充满生活情趣。更巧妙的是:作者设置了一个悬念“你给我做……”做什么呢?作者没有直接把三兄弟让裁缝做女式服装的对话告诉幼儿,这留给幼儿一个想象、思考的空间。中班幼儿有意注意开始发展,复杂句发展较快,词汇增加,能用完整、较连贯的语言表达自己想说的事,喜欢欣赏不同形式的文学作品,理解作品的人物形象,用恰当的语言、动作、绘画形式表现自己对作品的理解和体验,扩展想象,尝试创编。希望通过这个故事来提高幼儿对文学作品的感受和表现能力,并寻求不同角度的思维方式。鼓励幼儿能大胆地想象,表现自己的情感。
随着主题活动《奇妙的世界》的进行,小朋友们对各种动物非常感兴趣,特别是动物们各自与众不同的外形特征,对孩子们特别有吸引力。故事《小乌龟开店》情节简单有趣,形象鲜明突出,贴近幼儿生活,易于幼儿理解。中班幼儿通过家庭、社会活动、角色游戏等途径对成人社会的不同工种及其特征有了一定程度的认识,并表现出了较为浓厚的兴趣,他们乐于模仿、表演,乐于借此进行游戏、交往。而”小乌龟“这一动物形象是幼儿所熟悉喜爱的,而且有着鲜明的外形特征,较易引发幼儿的多种联想。 纲要中指出”既符合幼儿的现实需要,又有利于其长远发展:既贴近幼儿的生活,选择感兴趣的事物或问题,又有助于拓展幼儿的经验和视野。“中班语言活动《小乌龟开店》恰恰来源于生活,又能服务于幼儿的生活,让幼儿在讲述中懂得每个人各有优点,符合中班幼儿的年龄特点和学习特点。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。