2、引导幼儿用学过的花纹、创作花纹,装饰纸袋,要求色彩鲜艳。3、培养幼儿的发散性思维能力和审美能力。活动准备:纸袋样品、制作图解、挂历纸、剪刀、胶棒、油画棒、粘画活动过程:1、欣赏美丽的春天风光,感受家乡的美丽。2、激发幼儿爱家乡爱聊城的情感,让家乡的春天更美丽,启迪幼儿环保意识。3、如何使家乡更美丽?
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
2.通过欣赏课件,感受画面布局的重要性。活动准备:1.课件制作《可爱的乌龟》2.乌龟手偶。3.画纸、勾线笔人手一份。
A.城镇数量猛增B.城市规模不断扩大【设计意图】通过读图的对比分析,提高学生提取信息以及对比分析问题的能力,通过小组之间的讨论,培养合作能力。五、课堂小结和布置作业关于课堂小结,我打算让学生自己来总结,你这节课学到了什么。这样既可以提高学生的总结概括能力,也可以让我在第一时间内获得它们的学习反馈。(本节课主要学习了珠三角的位置和范围以及改革开放以来珠三角地区工业化和城市化的发展。)关于作业的布置,我打算采用分层次布置作业法。第一个层次的作业是基础作业,要求每一位同学都掌握,第二个层次的作业是弹性作业,学生可以根据自己的情况来选做。整个这堂课,老师只是作为一个引导者、组织者的角色,学生才是课堂上真正的主人,是自我意义的建构者和知识的生成者,被动的、复制式的课堂将离我们远去。
(3)师生讨论,提升思维深度。教师引领学生将讨论由农业生态破坏、土地利用不合理等表象问题逐步深入到农业结构不合理、农业技术落后等深层问题,提升了学生思维的深度。(4)角色体验,突破难点落实重点。在农民与保护区工作人员的角色体验活动中,学生们尝试换位思考,在冲突与交锋中,在教师的引领下,重新认识环境保护与区域经济发展的关系,在情感体验中加深对可持续发展内涵的理解,小冲突凸显大矛盾是本课设计的创新之处。2.注重对地理问题的探究,突出地理学科本质。地理学科具有综合性、区域性特征,区域差异及人地和谐发展观是我们在教学中应该把握的基本特征,也是我们应当把握的地理学科的本质特征,因此在本节课的设计中我注重抓住地理事物的空间特征、综合性特征,以突出地理学科的本质。
二、 活动准备1. 若干个打满红黄蓝三原色的乒乓球。(分别放在若干个对应颜色的箩筐里)2. 白颜色的宣纸若干,三种颜色的五角星若干。3. 有三原色组成的三条河。4. 小兔子的头饰若干,别针若干个,绳子两条。三、 活动过程激发兴趣——自由探索——游戏体验(一) 激发兴趣1.“兴趣是最好的老师!”教师在活动一开始扮演兔妈妈的角色,带领着兔宝宝们通过三条不同的河流,去大森林里探险。教师带领幼儿一边走一边巩固和复习红黄蓝三种颜色。老师请顺利通过的兔宝宝每人选一朵花作为奖励,其中分为三种颜色的花。2. 请小朋友们根据自己所选择的花的颜色,站到对应的颜色的家里。教师给予他们不同的称号:红队、黄队和蓝队。
活动目标:1、巩固对正方形的认识,了解平面图形和立体的区别。2、初步感知正方体,知道其名称和最显著地特征。活动准备:圣诞老人、大、小包装盒(人手一个)、正方形卡片、剪刀、彩笔(人手一个)、各种装饰材料(皱纹纸、亮光纸、卡纸等)。活动重难点: 重点:初步感知正方体,知道其名称和最显著地特征。难点:了解平面图形和立体的区别。活动过程:一、导入部分:出示圣诞老人,引起幼儿兴趣。师:圣诞节快到了,圣诞老人给小朋友们送来了礼物,我们一起来看看是什么吧?(出示包装盒)好漂亮的礼物盒,里面会是什么呢?打开看看圣诞老人为什么要送我们这些礼物呢?它想让小朋友探索一下这些包装盒有什么秘密?
活动准备:1、笔、和表格人手一份。 2、猴子的手偶一个。 3、多媒体课件。 4、小红旗人手一面。活动流程: 猴子求救——幼儿帮助猴子找家——进行环保教育,同时介绍猴岛及一些美丽的海南风光——讨论——当个环保小卫士。 活动过程: (一)开始部分: 一、猴子求救 1、“孩子们,你们看猴子哭了!”2、让孩子们看: 猴子哭着说 “我没有家了,请大家帮帮我好吗?” 二、幼儿帮助猴子找家 1、“猴子为什么没有家呢?”让孩子们讨论 2、“你们能不能帮助猴子呢?”3、“那好,请你们把想出来的办法用标记记录出来,看谁的办法最多。”4、让孩子们分组画标记,想办法帮助猴子。
活动过程:1. 请幼儿将语言课上学的诗歌《春天的秘密》朗诵一下,从中引导幼儿想象春天的景象。2.提问:(1)“你们先闭上眼睛想一想诗歌中都说到了哪些春天的秘密(2)启发幼儿想一想还有哪些是春天的秘密?(小燕子、小草、小动物)3.讨论画春天的内容,充分发挥自己的想象力。4.分组讨论设计本组绘画内容进行分工(谁画什么自己要说出来,最好不与别人重复)商量时小声点,不要把自己的内容让别人听到,要不然就不是秘密了。5.幼儿分组开始画,每名幼儿都要参与,一个一个的画,画好了的就可以涂色。 6.教师在指导过程中,注意将各组内容要保密,每组的内容都有不同的特点,以免重复,可以提一些建议。 7.启发引导幼儿想办法,怎样才能使我们的画成为秘密? 延伸活动:装订好幼儿的作品放到表演区编故事。
2.培养幼儿的观察、动手及表现能力。 准备: 一次性盘子人手一只,橡皮泥若干:每张桌上放一只鱼缸(事先用布遮盖),内有蝌蚪、水草、玻璃弹子等:背景图一幅(上面画有一只大青蛙,事先用布遮盖):录音机及录有青蛙叫声的磁带。 过程:一、引起兴趣1.美丽的春天来到了,小草从泥土里钻出来了,柳树长出了嫩绿的新叶,迎春花张开了小嗽叭,小蚂蚁伸伸懒腰,小蜜蜂、小蝴蝶也跳起了舞,你们听,又有谁来了?(录音机传出青蛙的叫声,教师适时掀开背景图上的遮布。)2.青蛙妈**小宝宝是谁?它们来了吗?(幼儿回答后,教师掀开鱼缸上的遮布。)
来源一:活动区角中,让幼儿准备娃哈哈瓶、易拉罐、可乐瓶等废旧材料,课余活动中,发现有许多幼儿给娃哈哈瓶上画上头发、眼睛、衣服,幼儿的兴趣很浓。幼儿生活中,娃娃是他们最熟悉、最了解的事物。小的时候最爱抱娃娃,家里都有各种各样的娃娃。来源二:手工是幼儿十分喜欢的活动,在撕撕、贴贴、折折、剪剪中幼儿获得极大的满足感和成功感;各种瓶子在我们的生活中,随处可见,做成娃娃当装饰品,简便又美观,及时感受制作活动带来的成功和喜悦,符合幼儿思维直观现象的心理特点。对于制作娃娃幼儿非常想亲身体验,本次活动来源于幼儿的生活经验,抓住幼儿爱模仿的特点,满足幼儿的愿望。因此,选择这个主题内容。二、课题的实施:(一)活动重点、难点:1、 重点:引导幼儿利用各种材料制作娃娃,感受活动的乐趣。2、难点:制作出不同头发、帽子、衣服等的娃娃。
2、启发幼儿做一些环保方面力所能及的事情, 培养幼儿自觉保护的良好习惯。活动准备:课件制作、小小外星人、挂图一副。活动重点:使幼儿懂得要保护环境。活动难点:让幼儿能主动参与保护环境。活动过程:(一)导入部分:“小朋友,你们好,我是徐老师,今天我们班上来了一位小客人,你们看他是谁?”外星人“贝贝”出现引起幼儿的注意。(“贝贝”我介绍:“hello!小朋友,你们好!我的名字叫贝贝,来自另外一个星球。我们的星球上什么也没有,很荒凉,妈妈告诉我,地球是个很美的地方,我就来到这里。可看到的并不像妈妈说的那么美。我拍了几幅照片,小朋友你们看。)并引出课题。(二)基本部分:1、教师演示课件(1—3幅图),并提问:“谁来说一下他们这样做对不对?”(幼儿回答)为什么不对呢?(幼儿回答),幼儿一边回答教师一边演示课件。2、:“他们的行为都不对,因为这破坏了我们美丽的环境,那么小朋友应该怎样做?”(幼儿回答)
【活动目标】1.让幼儿通过操作实践,掌握配制泡泡水的方法。2.初步学会观察泡泡大小与泡泡水之间的关系。3.激发幼儿的好奇心,满足幼儿探索实践的需要。 【活动准备】1.提供盐、颜料、洗衣粉、洗洁精、水、小勺、小碗、吸管等。2.每组一个操作台。3、录像机。 【活动过程】一、泡泡水的秘密。1.教师出示幼儿带来的吹泡泡玩具,引起幼儿学习兴趣。 师:今天老师给小朋友带来了一件玩具,想和小朋友一起玩,看看是什么?(教师吹泡泡,幼儿追泡泡)这个玩具好玩吗?谁来玩一玩?大家都想玩可只有一个玩具,这怎么办呢?讨论结果:自己配制泡泡水。2.幼儿第一次尝试配制泡泡水。(1)幼儿自由分组,在操作台前尝试用不同的材料配制泡泡水。(2)请每组推荐一名幼儿代表本组在全体幼儿前发言,交流经验。 提问:你们是怎样配制泡泡水的?能吹出泡泡来吗?3.幼儿第二次尝试配制泡泡水。 幼儿在借鉴同伴成功经验的基础上,再次动手操作,亲自体验如何成功地配制泡泡水。教师拍摄幼儿配制泡泡水的过程及吹出来泡泡时的情景。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。