求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC中,∠C=90°.求证:∠A与∠B互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A与∠B互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.三、板书设计命题分类公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.
解析:要在地球仪上确定南昌市的位置,需要知道它的经纬度,故选D.方法总结:本题考查了坐标确定位置,熟记位置的确定需要横向与纵向的两个数据是解题的关键.【类型二】 用“区域定位法”确定位置如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在________区,阳光中学在________区.解析:本题首先给出的是表示文化宫和体育场的位置,即D2区和C4区,这就确定了本题中表示建筑物位置的方法,即字母表示列数,数字表示行数.故填A3,D5.方法总结:解此类题先要弄清区域定位法中字母及数字各自表示的含义,再用已知的表示方法来确定相关位置.三、板书设计确定位置有序实数对方位法经纬度区域定位法将现实生活中常用的定位方法呈现给学生,进一步丰富学生的数学活动经验,培养学生观察、分析、归纳、概括的能力.教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境;另一方面,为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究.
第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢? 答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上, 确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ. 探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义? (4) 在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置. Ⅱ. 学有所用(1) 你能用两个数据表示你现在所坐的位置吗?
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
为鼓励和引导广大育龄群众自觉自愿的使用药具避孕,减轻使用人员的心理负担,上半年我镇广泛开展了药具公开服务承诺活动,主要从以下六个方面开展了大量工作:
(三)主要措施持续做强精准招商。聚焦纺织鞋服、健康食品和新能源电池“两主一特”扎实开展精准化、专业化招商,重点跟进恒科中国?绵阳国家科技城生命健康产业国际协同创新先行试验区干细胞研究及应用中心项目、中材年产2000万平方米硅酸钙板暨装配式部品产业基地项目、商信西北道地药材集散中心项目等,力争实现年度目标任务。持续做大资金到位。加快推进签约项目建设进度,促进项目早日入库投产;继续寻求省外企业资源,探索更多项目入库方法。积极与市经合局对接,请求指导更多入库方法,并向上争取调减任务目标。持续做优服务保障。进一步落实“四个一批”要求和招商引资项目推进月报制度,及时更新《签约项目促开工作战图》,对所发现影响项目落地开工的问题,按照“建台账”“发点球”和“销号管理”的方法加速问题解决。同时,持续做好“听音问廉”走访企业工作,深入开展“清淤治乱清风护航”优化营商环境专项行动,全力打造“亲清”新型政商关系。
甲方:乙方:为了推动主播更好的发展,促进合作双方的发展,合作双方收益最大化,经友好协商,在合作意向上达成一致,结为合作伙伴。甲乙双方以协议规定的方式,充分保证双方的权益。现就双方合作的具体事以及双方的权力与义务达成如下协议:第一条 违约责任甲乙双方不得违反直播平台的政策,如有一方违约给双方造成损失,过错方赔偿损失。第二条 利益分配1、乙方招募到的主播由甲方安排到YY直播平台(甲方不得把主播另签约在外站,不得倒卖或倒签),乙方每个招募到的主播按甲乙双方协商好的主播标准费用由甲方把费用支付给乙方。2、合作双方根据自己的资源,在平台内争取到的利益将按照直播平台政策去分配,艺人按甲方规定的薪资分配制度执行。
甲方: 乙方:住址: 身份证号:联系电话: 联系电话:鉴于:甲方(以下称为公司)是依法注册成立并合法存续经营的影视文化传媒公司;乙方(以下称为经纪人或乙方)是具有完全民事行为能力的自然人,在演艺经纪业务方面具有丰富的娱乐资源和专业操作管理经验。甲乙双方本着自愿、平等、公平、互利的原则,根据《中华人民共和国合同法》及相关法律、法规,经双方充分协商,达成如下协议,并誓言共同信守。一、合作内容1、公司聘请乙方为公司经纪人,经纪人为公司推荐艺人,帮助公司维护与包装艺人,协助艺人签订《艺人经纪合同》。2、经纪人有权管理公司所安排分配的艺人在全球范围内的演艺活动,包括但不限于影视剧演出、舞台演出、主持、歌唱、唱片、广告代言、商业活动等领域内的演艺活动和业务的策划、联络、谈判、签约、履约等事宜,并有权获取报酬。二、合作期限自_______ 年_______月________日 起 至________年_________月___________日止,为期_______年,自签约后立即生效。合同期满,如双方均有意续签,应在本合同期限届满前一个月发出书面通知。三、公司权利和义务1、经纪人应严格遵守公司制度,不允许私下承接业务,如经纪人为公司带来业务,公司给予一定比例的补贴与奖励。2、公司为经纪人提供必要的业务活动支持。经纪人承接公司发布的艺人活动的相关费用(如活动经费、交通费、通讯费等)由经纪人自行承担。
甲方:*******文化传播有限公司乙方: 经甲乙双方友好协商,根据国家有关法律法规在平等互利的基础上达成如下协议:一、工作时间:本协议有效期为______年__月___日起至______年__月___日。(单场活动则为甲方规定的工作时间)。二、工作方式:根据甲方提供的场地及时间,乙方按照甲方安排进行__________(演艺类型)工作。三、甲方有权利按照公司各项规章制度对乙方的演出行为进行必要的管理。四、在合同有效期内,甲方有义务为乙方提供不少于_____次工作机会。(甲方通知乙方后,因乙方时 间、健康及私人原因拒绝的也算在_____次之内)。
甲乙双方本着平等互利原则,根据国家有关法律法规,乙方接受甲方的委托,就短视频拍摄制作事项,双方经协商一致,签订本协议,信守执行.第一条 合作内容乙方负责对于甲方提供的MIGOR品牌的果酒通过直播进行宣传曝光和直播销售。直播排期以文档形式另行发给甲方。乙方安排旗下主播以插播和专场直播的形式进行直播。第二条 合作周期2.1乙方须于甲方签订合同,甲方寄出样品,乙方收到样品后,经过乙方对样品进行对比后,确认产品质量合格、价格合理后,乙方通知甲方安排带货时间,双方协商时间达成一致后,乙方立即开展安排主播直播带货工作。第三条 制作费用(不含税)本次合作纯佣金形式,甲方提供产品报价,乙方根据实际情况与甲方商议后可制定直播售卖价格。第四条4.1产品报价产品型号 出厂价 包邮价 售价248ml小坛果酒 六坛礼盒装 4.2 结算方式
2、提高幼儿美的欣赏能力。二、活动准备:凡高、米罗、修拉、毕加索、蒙德里安的画各4幅、画家头像各一幅、小红心17个、网架2个三、活动过程:(一)以到艺术博物馆参观引入,引导幼儿结伴在作品前自由欣赏。1、幼儿自由欣赏、交谈。2、幼儿为自己喜欢的画贴上小红心。师引导幼儿凭借自己对画家风格和特点的印象来
甲方:XX文化传媒有限公司负责人:XX电话:XX 邮箱:XX@XX.COM联系地址:XX省XX市乙方:公民身份号码:电话: 抖音ID:联系地址:鉴于甲方拥有丰富的互联网资源,擅长达人的包装、宣传和营销策划,乙方擅长在短视频、直播等相关平台创作作品;双方愿意利用其自身优势进行合作,提高乙方的知名度和影响力,创造商业收益并获取相应对价,以期获得合作共赢。甲乙双方本着互惠互利、诚实守信的原则,经双方协商一致达成如下协议,以兹共同遵守。一、合作期限及范围1、本协议的合作期限为1年,期限自本协议生效之日起计算; 2、本协议的合作范围为全球。在本协议项下的合作事项及内容上,甲方将是乙方在合作地区唯一战略合作方、唯一全权代理方;3、合作期限届满前壹个月内,如双方未书面提出不再续约的,本协议将自动延续,延续期限为叁年;同等条件下,甲方享有优先续约权;4、自媒体平台:是指以互联网、电子技术的手段,向不特定的大多数或者特定的单个人传递文字、视频、音乐、图像等规范性及非规范性信息的新媒体平台的总称。包括但不限于抖音、快手、B站、火山、西瓜、今日头条、微信公众号、微信视频号、微视、网易号、搜狐号、爱奇艺号、百家号、企鹅号、大鱼号、新浪微博、趣头条、慧头条等信息流平台以及符合上述自媒体特征的相关平台;5、自媒体账号:在第4项所定义的自媒体平台中所注册的账号,即为自媒体账号。
第一种是"每天都非常焦虑,感觉学不完了”,我还记得高一时靖静老师曾说,如果每道题都能让你写出来,那人人数学都考150了,显然,对于极大一部分同学,我们的目标并不是750分,所以,不如从现在开始,把会的都做对,即使拿不到能上清华北大的分数,也不会给自己留下遗憾。试着给自己接下来的15天分成几段,规划每天要完成的任务。我为自己建立了一个小本,每天在今天的计划上打勾,以至于每天筋疲力尽时依然可以清晰的看到"至少完成了什么”并从中获得一点成就感。第二种是"太辛苦,感觉坚持不下去”,如果你有这样的想法,试着用3分钟给未来的自己写封信吧.
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.