变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
尊敬的各位评委老师,大家好!我说课的题目是小学道德与法治四年级上册《我的家庭贡献与责任》。下面我将从教材分析、学情分析、教学目标与重难点、教法与学法、教学过程、板书设计6个方面进行说课。一、教材分析《我的家庭贡献与责任》是统编教材小学《道德与法治》四年级上册第二单元第6课,共有两个话题,本节课学习的是第一个话题《我的家庭贡献》,主要是引导学生了解自己作为家庭的一员,我们对家庭也要有自己的贡献,知道怎样为家庭做贡献,旨在引导学生体会自己作为家庭一员的重要性,有为家庭作贡献的意识和行动。二、学情分析学生虽然是四年级了,但是他们大都倍受家人的宠爱,过着衣来伸手,饭来张口的生活,有的情况下,看到父母很累,也想为家里做点什么,但又不知道怎么做。在日常生活中更不知道自己为家庭能做什么贡献。因此,要通过有效的教学,帮助引导学生作为家庭的一员,知道并学会怎样为家庭做贡献。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1.体会自己作为家庭一员的重要性。2.了解为家庭做贡献的方式。
一、说教材(一)教材分析《家乡的喜与忧》是四年级下册第四单元第十二课的内容。这一单元主要 从感受家乡文化,关系家乡发展的角度,引导学生从自己身边可触可感的资源 出发,了解自己的家乡,认识自己的家乡,关心家乡的发展,感受上海前进的步伐,生活条件的巨大改善,从而让学生产生热爱家乡的情感。(二)教学目标1.学生了解家乡的过去,看看家乡的现在,从而感受家乡的变化与发展。2.让学生通过图片资料,来发现家乡的巨变,通过宣传、反映、建议让学 生参与到建设家乡的行列里来。3.让学生从家乡的变化中,感受家乡的发展,培养对家乡的热爱之情,培 养作为家乡的一员为家乡建设贡献自己一份力量的责任感。(三)教学重难点 教学重点:发现家乡的变化,感受家乡的变化发展,培养对家乡的热爱之情,通过宣传、反映、建议让学生参与到建设家乡的行列里来。教学难点:发现家乡的变化,感受家乡的变化发展,培养对家乡的热爱之情,培养学生作为家乡的一员为家乡建设贡献自己一份力量的责任感。
10月15日国旗下讲话热爱学习,争做课堂的主人敬爱的老师、亲爱的同学们:早上好!今天我国旗下讲话的题目是:《热爱学习,争做课堂的主人》。开学至今在各位老师的共同努力下,各个年级的教学工作稳步推进,许多同学取得了可喜的成绩和很大的进步,这些成绩的取得离不开同学们勤奋刻苦的学习,当然更离不开各位老师的辛勤劳动。其实,我们每一个同学都有学好的愿望,都希望自己品学兼优,得到老师的器重,同学们的羡慕。在我们身边常常看见有些同学学得轻松,成绩优秀,但也有同学看似学得很努力,结果成绩却不大理想,这到底是什么原因呢?这个问题的答案看似复杂,其实很简单,就是我们是否热爱学习!所有成功的同学都很热爱学习, 学习应有一种积极的态度, 不是被动的, 不是怕老师批评、家长责骂才不得已而为之。其次,我们学习知识的主战场是课堂。但是,我们有的同学是身在曹营心在汉;上课只是用眼睛看看,用耳朵听听,却懒于动手、动嘴、动脑,或一知半解,或一无所知。他们不是学习的主人,他们成了学习的奴隶!孔子曾说过:“知之者不如好之者,好之者不如乐之者”。兴趣是最好的老师,同学们要注重自己学习兴趣的激发。同学们一定要成为学习的主人,要积极地参与到课堂中来,这样才能感受到学习的乐趣。
这篇《法制与安全的国旗下讲话稿》,是特地,希望对大家有所帮助!法制安全与人类文明息息相关。可以说,从人类为了保护自己而用火焰驱赶猛兽开始,安全就随着这把火燃烧至今。随着人类文明的发展,法制的出现也为安全提供了一道保障,法制安全的概念也就出现了。所谓法制安全,就是有关安全的法律与制度,它在我们的日常生活中必不可少。同学们生活在幸福而温暖的环境里,似乎并不存在什么危险。但是在家庭和校园生活、学习活动中仍有许多事情需要倍加注意和小心对待否则很容易发生危险,酿成事故。所以,请同学们遵守校纪校规,加强安全意识。比如,不在走廊上疯跑打闹;妥善保存安放锋利、尖锐的工具,防止有人受到意外伤害;在做清洁,特别是擦窗户时注意安全,谨防不慎发生坠楼的危险。在日常生活中,我们应注意饮食卫生,否则就会传染疾病,危害健康,“病从口入”讲的就是这个道理。所以我建议大家在选择用餐地点时少考虑校外的街头小摊,那里的食品质量得不到保障;而学校食堂值得考虑,至少我们相信食堂饭菜的质量是合格的。
学生活动:认真阅读,积极思考。教师总结:这样一个人口大国,依靠外国是不能解决温饱问题的,更谈不上社会主义现代化。实行对外开放,发展对外经济关系,必须坚持独立自主、自力更生原则,并以此为自己发展的根本基点。但坚持坚持独立自主、自力更生,并不是闭关自守、盲目排外,而是在立足自身基础上实行对外开放,把二者结合起来。(三)课堂总结、点评这节课我们重点学习了我国对外开放方面的有关知识,知道了在经济全球化的国际大趋势下,社会主义现代化建设必须实行对外开放,积极参与国际经济竞争与合作。了解了我国对外开放的成就、格局、新形势下的基本政策和战略。这对于我们在正确地认识国际经济关系,增强社会主义优越感和民族自强意识,自觉投身现代化建设等将有重大指导作用。
2.避免使用过多的描写手法,避免过多地使用形容词,特别是华丽的辞藻,尽量采用直截了当的叙述和生动鲜明的对话,因此,句子简短,语汇准确生动。在塑造桑地亚哥这一形象时,他的笔力主要集中在真实而生动地再现老人与鲨鱼搏斗的场景上。鲨鱼的来势凶猛,老人的沉着迎战,机敏矫捷,都写得生动逼真。如写鲨鱼出现的情形,“当一大股暗黑色的血沉在一英里深的海里然后又散开的时候,它就从下面水深的地方窜上来。它游得那么快,什么也不放在眼里,一冲出蓝色的水面就涌现在太阳光下。”这段描写没有一个比喻句和形容词,但鲨鱼的凶猛、快捷,形势的紧迫却立刻展示在读者面前,清新洗练的叙述文字和反复锤炼的日常用语,使人读来有身临其境之感。文中对大海的描写粗犷简洁,犹如一幅水墨山水画,读来令人心旷神怡,美不胜收。
整个教育活动我设计了三个环节:第一个环节,谈话引入,拉近师生关系,激起幼儿认真听讲,大胆回答问题的信心。出示哭泣的青蛙,引起幼儿学习兴趣,第二个环节借助图片讲故事,引导幼儿发现动物们各自的本领,帮助伤心难过的青蛙寻找优点,逐渐感知、体会故事中所蕴含的“我就是我,谁也代替不了”的道理。第三个环节,鼓励幼儿大胆在别人面前讲述自己的本领,展现自己的本领,并引导幼儿发现自己身上不被关注的优点,为幼儿提供表现自己的长处的机会,增强自尊心和自信心,师生互动、生生互动,教师和孩子们的评价直接影响着幼儿的自我价值感,让每个孩子感受赞美和被赞美的快乐。从而大胆的告诉别人“我喜欢我自己”,让自己更加的自信!整个活动,给孩子们创造一个轻松、快乐的氛围,以提高孩子们与别人交流的自信心。更重要的是将自信培养教育渗透到幼儿生活当中,引导幼儿正确地认识自我,评价自我。活动中有不当之处,敬请各位评委和老师批评指正。
2、能在活动中培养自己的观察力以及初步的空间想象力。 3、使在探索活动中提高对认识立体图体的兴趣。 活动准备: 正方体、长方体制作材料纸若干张,正方体、长方体积木若干块。 活动过程: 1、集体活动。 观察两张制作材料,讲述异同。“小朋友看老师带来了两张纸,请你仔细观察它们有什么相同的地方和不同的地方?(相同点:都有6个图形组成。不同点:一张纸上都是一样大的正方形组成。还有一张纸上有正方形和长方形组成。) 2、幼儿操作活动。 “今天老师就要请小朋友用这两张纸来变魔术,怎么做呢?” (1)介绍制作形体的方法。 出示示意图,教师简单讲述制作方法。
【活动地点 】 班级教室【活动准备】 1.布置有关的节目,指导学生进行练习。2.周围环境的布置以及有关材料的准备。【活动过程】一、主持人出场宣布班会开始A:我们是21世纪的主人;B:我们是祖国的未来和希望;A:我们是充满生机的新一代。B:然而,有的人却没有迈好青春的第一步,而误入了法网,给自己留下了人生的永久遗憾,也给我们敲了警钟。A:是的,我们一定要迈好关键的第一步,下面我们观看小品。 (表演小品:生A怀疑生B偷了他心爱的钢笔,但由于没有证据,情急之下两人起了争执,生A争不过生B。于是,放学之后,生A找了他所谓的“铁哥们”,跟踪生B并殴打他。)B:刚才我们观看了小品,相信大家一定有所感受,现在大家讨论一下,然后我们各抒己见吧!A:我宣布X年级X班,A、 B:《遵纪守法与法同行》主题班会正式开始。
一步与一生古语云:“不积跬步,无以致千里;不积小流,无以成江海。”人生的轨迹,就是由一步步脚印组成,每一步对于一个人的一生都是及其重要的。“千里之行始于足下”,千里可以理解为我们漫长的一生,而始于足下可以理解为我们走出的那一步,那一步是如此重要,甚至会决定我们未来的方向,所以对待“一步”要像对待“一生”一样重视,虽说条条大路通罗马,可道路有好有坏,有平原有高出,有鲜花有荆棘。屈原说“路漫漫其修远兮,吾将上下而求索。”
同学们:我们应该懂得学习对我们来说是一种需要,是我们实现理想的途径,勤学更是我们成材唯一的有效途径。任何学习意识的形成,首先应培养良好的动机,正像机器要有发动机一样,每种学习的行动的后面都有一种动力,就像发动机一样,它的功率越大,机器的动力就越大,而学习的动力越强,学习的自觉性和积极性就越高。没有这个马达,学习也就无从谈起。学习意识的形成,还需激发强烈的学习兴趣和提高“会学”的能力。“会学”能力的形成并非易事,我们知道:学习是一项艰苦的脑力劳动,任何学习成果的获得都不是朝夕可成,一蹴而就。然而有些同学终日做着“成材梦”,却不肯付诸行动去学习;羡慕那些盛开的花朵,却不用辛勤的汗水去浇灌它,空有“天生我才必有用”的想法,结果只是黄梁美梦一场空。
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
学习设计的前三步,体现了深度学习,学生经历了一个“观察——分析——思考——创新——迁移运用”的过程。另外,在设计的过程中,体现了德育课程一体化,既渗透了环保理念,又将学生的课堂活动与学校特色相整合。 第二课时属于实地操作,分为三个环节(一)依据蓝图,小组行动根据上节课商讨结果,以小组为单位进行实地装扮。(二)发现问题,解决问题引导学生在实践操作的过程中及时发现问题,并组内协商解决,增强团队意识。(三)评比选优,交流分享教师带领学生一起参观并进行评价,选出“最优设计团队”。活动结束后,分享活 动感受,体会团结合作的意义。 本课时的三个环节让学生在真实的生活情境中去体验,获得真实感受,这是深度学习的重要方面。在这个过程中,学生能够将道德认知和道德情感落实到行动中去,真正提升了学生的道德行为能力。
(二)教材分析《分数和小数的互化》是在学生学习了分数的意义分数与除法的关系和分数的基本性质的基础上教学的。学习这部分内容是为以后学习分数和小数的混合运算打下基础。例1是教学小数化分数。教材突出“先把小数化成分母为10、100、1000……的分数再写成最简分数”这一转化过程。例2时教学6个数的大小比较,从中学习如何把分数化小数,教材按照已掌握的分数与除法的关系和分数的基本性质,提出问题引导学生想出多种方法把分数化成小数。本节课的内容,体现了数学知识的内在联系,学生通过学习这部分知识,将为今后学习分数与小数的混合运算打下良好的基础。(三)教学目标1.知识目标:是学生理解并掌握分数和小数、小数和分数互化的方法,能正确地进行分数与小数、小数与分数之间的互化。2.能力目标:培养学生的观察、归纳和概括能力。3.情感目标:体验合作学习的快乐,感受数学在生活中的应用价值,渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
一、说教材图形的放大与缩小是人教版数学六年级下册第四单元《比例》中的内容。以前学生对比、比例、比例尺有了初步的认识和了解,对比、比例的意义进行了研究,通过学习,学生对比、比例、比例尺有了很深刻的认识。二、说教法、学法教法:本节课我采用具体的实验操作,让学生动手画一画、比一比、看一看等方法,从而发现图形的放大与缩小与原图比较只是大小变化,形状没变。学法:教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想,学习的整个学习过程围绕着教师创设的问题情境之中。 三、教学重、难点重点:能在方格纸上按一定的比将简单图形放大或缩小。难点:使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
一、说教材图形的放大与缩小是人教版数学六年级下册第四单元《比例》中的内容。以前学生对比、比例、比例尺有了初步的认识和了解,对比、比例的意义进行了研究,通过学习,学生对比、比例、比例尺有了很深刻的认识。二、说教法、学法教法:本节课我采用具体的实验操作,让学生动手画一画、比一比、看一看等方法,从而发现图形的放大与缩小与原图比较只是大小变化,形状没变。学法:教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想,学习的整个学习过程围绕着教师创设的问题情境之中。 三、教学重、难点重点:能在方格纸上按一定的比将简单图形放大或缩小。难点:使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
1.估计一下教室地面的大小,并说说你是怎样估计的?如果知道教室的长为8米,宽为6米,请问它的面积是多少?如果要在教室的天花板一周围上装饰线条,需要多少米线条?2.小刚房间的一面墙壁长6米,宽3米,墙上有一扇窗面积是3平方米,现在要粉刷这面墙壁,要粉刷的面积是多少?3.一辆洒水车每分行驶60米,洒水的宽度是8米,洒水车直行9分,被洒水的地面是多少平方米?4.一张长方形的纸,长9厘米,宽4厘米,剪下一个最大的正方形后,剩下纸片的面积是多少平方厘米?5.小明用36厘米长的铁丝围成一个正方形,这个正方形的面积是多少平方厘米?6.有两个大小一样的长方形,长18厘米,宽9厘米,拼成一个正方形,它的周长是多少?拼成一个长方形,它的周长是多少?拼成的两个图形面积有什么关系?是多少?
让学生再用计算器计算,然后让学生谈谈遇到的问题(计算器已经不能把这些数显示出来了)。最后让学生根据上面的计算结果,找出规律,再直接写出后四题的得数,并组织学生交流,要求学生说说自己的思考过程及依据,确认发现的规律,让学生进一步体会计算器的作用:计算器还可以帮助我们探索规律。(设计意图:设计不同层次的练习,使学生体验计算器的有用性,提高学生解决问题的能力,培养学生辨证思维能力)四、最后进行全课总结。整个活动,老师创设情境,启发诱导,设疑激趣,学生自主探索,动手操作,积极思考,讨论交流,给学生提供了充分的数学活动机会,充分发挥了学生的主体作用,使学生不仅掌握了知识,发展了能力,同时又体验了数学问题的探索性与创造性,以及成功的喜悦,学生学得轻松,学得主动,学有创造,学有发展