由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
一、说教材本课教学主要是让学生了解家乡的各种民间艺术,在了解民间艺术的基础上,感悟其美妙和艺术性,培养对民间艺术的热爱。进而树立为继承和发扬家乡的民间艺术做贡献的信念。学情分析从学生的心理特点和认知程度上看,孩子们的注意力和兴趣往往会更多地放在民间艺术的外在形式上,且往往停留在表面现象上,而民间艺术和家乡气候、地形、历史文化间的密切联系则是孩子们很难考虑到的。课前指导时,教师可尽量引导学生使用简便、可行的方法收集材料,比如实地观察、查阅报刊和书籍。而材料的对象和内容尽量以学生身边熟悉的事物为主,课前准备的时间尽可能充分。课堂上,教师也要给学生们足够的交流时间与空间。对于难理解、难展现的地方,教师可先做示范,也可利用多媒体和课间对学生进行直观引导,使学生交流在范例引导下有目标、有侧重、有特色、有实效。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:1、了解我国著名的民间艺术;2、知道这些民间艺术的来源;3、了解我国民间艺术的现状。
一、说教学内容义务教育课程标准实验教科书一年级下册《两位数减一位数退位减法》被安排在人教版一年级下册第六单元“100以内的加法和减法”里,属于“数与代数”领域的内容。二、说教学目标1、知识目标(1)掌握两位数减一位数退位减的计算方法。(2)经历探索两位数减一位数退位减法计算方法的过程,从而理解退位减法的算理。2、能力目标(1)能正确进行退位减法的计算,并用自己喜欢的方法进行正确计算。(2)能够解决相应的实际问题。(3)培养学生的计算能力和动手操作能力。3、情感目标(1)感受退位减法与实际生活的紧密联系。(2)体会退位减法在生活中的作用。4、教学重点掌握两位数减一位数的退位减法的计算方法,并能熟练准确地进行口算。 5、教学难点:结合小棒操作说出不同的计算方法,并准确地口算。
单分析。一、说教材的地位和作用本节课的内容是人教版小学数学三年级下册第五单元的内容。在此之前,学生已经学习了两位数乘一位数笔算和两位数乘整十数的口算,估算和笔算。本节课学习的内容就是对以上知识点的梳理与巩固复习。二、说教学目标根据本教材的结构和内容分析,结合三年级学生的认知结构及其心理特征,我制定了以下的教学目标:1、通过复习,把“两位数乘两位数”这一单元的有关知识系统化、条理化。2、通过自主探索与合作学习,在系统复习的基础上理清知识脉络并进行分析归纳,掌握有序整理的方法,提高学习能力。3、经历独立整理、相互交流、综合应用的过程,感受学习的快乐。 三、说教学的重、难点本着《小学数学新课程标准》,在吃透教材基础上,我确定了以下的教学重点和难点。教学重点:用两位数乘两位数解决问题。 教学难点:笔算乘法积的定位。为了讲清教材的重、难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。
一、说教材本节课是义务教育课程标准实验教材人教版小学数学第三册19至21页的内容。它是在学生学习了20以内的退位减法、两位数减一位数和两位数减整十数以及两位数减两位数的不退位减法笔算的基础上学习的。它是以后学习多位数减法的重要基础。 二、说教学目标 1.学生在理解算理的基础上初步掌握两位数退位减法的计算方法,并能正确的进行计算。 2.培养学生的动手操作能力,发展学生的思维和语言表达能力。 3.通过情景的创设,培养学生的爱国之情,同时让学生在自主探索算法的基础上体验到成功的喜悦。 教学重点:本节课的重点是理解笔算两位数退位减的算理,能正确用竖式计算。 教学难点:理解两位数减两位数退位减法的算理。三、说教法 针对本节课抽象性较强,算理比较复杂,而二年级学生以形象思维为主,抽象思维相对较弱的特点,教学时应采用多种方法来激发学生兴趣,引导探究新知。我主要采用:情境教学法、尝试教学法、讲授法、直观演示法、练习法等,并使这些方法相互交融,融为一体。
尊敬的各位领导、老师:大家好!我今天说课的内容是人教版小学数学三年级下册第四单元《两位数乘两位数的不进位笔算》一课,我将从以下几个方面对本课进行阐述:一、说教材《两位数乘两位数的不进位笔算》是人教版小学数学三年级下册第四单元的教学内容。这部分内容是在笔算两、三位数乘一位数的基础上进行教学的,只是把第二个因数扩展到了两位数。两位数乘两位数的不进位笔算重点要解决的是乘的顺序问题和第二部分积的书写位置问题,使学生掌握基本的乘法笔算方法。为学习两位数乘两位数的进位笔算、多位数乘多位数的笔算打基础。因此,本课是是本单元的重点,对今后进一步的学习起着举足轻重的作用。二、说教学目标教学目标是教材的出发点和归宿,也是检查教学效果的标准和尺度。从教育学的角度来讲教学目标应在基础知识、能力培养、思想品质三方面进行明确。所以本节课的教学目标是:
一、说教材我说课的课题是《三位数除以一位数》,本课是人教版三年级下册第二单元除数是一位数的除法的笔算方法第二课时。这节课是在学生掌握了两位数除以一位数的笔算基础上进行教学的。首先回顾两位数除以一位数的笔算,在此基础上,鼓励学生尝试将过去掌握的两位数除以一位数的算法迁移到三位数除以一位数的笔算上来,它是以后学习较复杂除法的基础,也是学习数与代数的基础之一。1、教学目标(1)使学生理解掌握三位数除以一位数的笔算方法,培养学生有序思考的能力。(2)使学生在活动中积极地探索并理解算理,激发学生学习的热情。 (3)使学生感受数学与生活的联系,能够运用所学知识解决生活中的简单问题。2、教学重难点重点:掌握三位数除以一位数的笔算方法。难点:掌握三位数除以一位数的笔算方法并验算。
根据教材分析和学情分析,我确定了以下三维目标:第一个目标是知识与技能:使学生掌握三位数乘两位数的笔算方法。培养学生类推迁移的能力和口算的能力。第二个目标是过程与方法:使学生在小组内经历笔算乘法计算的全过程,掌握算理和计算的方法第三个目标是情感、态度和价值观:让每一个学生在合作学习、汇报展示、课堂互动交流中体验到学习带来的喜悦,培养学生认真计算的良好学习习惯。这节课的教学重点是使学生掌握三位数乘两位数的计算方法。教学难点是使学生掌握三位数乘两位数的计算方法并正确计算。针对这样的教学目标、教学重点和难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
一、说教材今天我说课的课题是《一个数乘小数》。它是人教版小学五年级上册第一单元第二课时的教学内容。本课时内容是在学生学习了小数点位置移动引起小数大小变化的规律,以及前一节课《小数乘整数》的基础上进行教学的,它既是小数除法学习的基础,也是小数四则混合运算学习的基础。本节课的教学目标为:1、让学生进一步巩固掌握一个数乘小数的意义和计算方法,通过学生的积极思考、全班交流和教师引导,得出确定积的小数位数时,位数不够要用“0”补足的方法。并能正确进行笔算和口算。2、让学生体验学习过程是一个不断遇到问题、不断探究解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。3、在探索过程中,培养学生的推理能力、归纳能力和语言表达能力。
一、说教材《一个数除以小数》是人教版数学五年级上册第三单元的第二个内容。小数除法是继整数除法、分数除法之后数的除法的又一次扩展,分为一个数除以整数和一个数除以小数两种情况。“除数是小数的除法”是小学数学教学中的一个重点,又是难点,它在计算教学中处于关键地位。它是综合性最强的计算,包含了商不变的性质、小数的基本性质、试商的方法,还有商中间有零的除法、商末尾有零的除法,为以后的小数四则运算的学习打下坚实的基础。教材通过设置生活情境,引出问题,学生产生认知冲突,激发学习兴趣。教材在编排时重点突出运用商不变性质把除数是小数的除法转化成除数是整数的除法,将新知转化为旧知。本节课的教学重点是让学生理解并掌握一个数除以小数的算理和计算方法。教学难点是让学生理解“被除数的小数点位置的移动要随着除数的变化而变化”。
(二)教材分析《分数和小数的互化》是在学生学习了分数的意义分数与除法的关系和分数的基本性质的基础上教学的。学习这部分内容是为以后学习分数和小数的混合运算打下基础。例1是教学小数化分数。教材突出“先把小数化成分母为10、100、1000……的分数再写成最简分数”这一转化过程。例2时教学6个数的大小比较,从中学习如何把分数化小数,教材按照已掌握的分数与除法的关系和分数的基本性质,提出问题引导学生想出多种方法把分数化成小数。本节课的内容,体现了数学知识的内在联系,学生通过学习这部分知识,将为今后学习分数与小数的混合运算打下良好的基础。(三)教学目标1.知识目标:是学生理解并掌握分数和小数、小数和分数互化的方法,能正确地进行分数与小数、小数与分数之间的互化。2.能力目标:培养学生的观察、归纳和概括能力。3.情感目标:体验合作学习的快乐,感受数学在生活中的应用价值,渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。
二、说教法、学法:根据本节课的教学目标。重点、难点设置,我确定本节课的教法与学法: 我国教育家叶圣陶先生曾经说过“教师教任何功课,‘讲’都是为了达到用不着‘讲’,‘教’都是为了达到用不着‘教’”,这一精辟结论强调了教师要教会学生如何学习,让学生一辈子受用。为突出重点,分散难点,始终使学生参与知识形成的过程。引导学生将“图”与“式”对照起来,进行分析和说理。从而在发挥直观形象思维对于抽象逻辑思维支持作用的同时,让学生逐渐感受数形结合的优势。根据高年级学生已具有处理信息和自主学习的能力,我设计了4个教学环节。教学中通过学生观察、分析、讨论、合作等方式,引导学生寻找计算方法,并通过发现、总结、运用法则调动学生的积极性。
四、是我本次说课最重要的部分——说教学过程。为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为:情境导入、讲授新课、巩固练习、归纳总结、布置作业5个阶段。具体过程如下: 第1阶段:情境导入。我将使用多媒体播放“分生日蛋糕”的情境,提出“假设只剩下1/2的生日蛋糕,但需要分给5个人,每个人能分得多少蛋糕?”通过现实生活中的情境,自然而然地引出分数除法的主体。“兴趣是最好的老师”,而对小学生来说,在学习中培养他们的学习兴趣,激发学习的热情尤为重要。教育学和心理学的研究表明,当学习材料与学生已有的知识和生活经验相联系时,学生对学习才会感兴趣。本节课开始由分蛋糕的场景引入,引起了学生的兴趣,紧紧抓住了学生的注意力,同时紧密联系学生的生活实际,让他们感到数学并不神秘,数学就在自己的身边,更激起了他们探索新知的欲望。
今天我说课的内容是六年级上册第一单元的例6、例7《整数乘法运算定律推广到分数》,我的设计理念是从学生已有的生活经验出发,创设情境、激发兴趣、建构知识、发展思维。下面我从教材、教法和学法、教学过程、教学反思四个方面来对本课进行阐述。一、 说教材1、教材分析:“整数乘法运算定律推广到分数乘法”是在学生已经掌握了分数乘法计算、整数乘法运算定律、整数乘法运算定律推广到小数乘法的基础上进行教学的。教材从生活入手,通过几组算式,让学生计算出○的左右两边算式的得数,找出它们的相等关系,总结出整数的运算定律对分数同样适用。学好这部分内容,不仅培养学生的逻辑思维能力,而且以后能用本课所学的使一些分数的计算简便,也为以后学习用不同方法解答应用题起着积极的推动作用。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。