解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?解析:(1)分1≤x<50和50≤x≤90两种情况进行讨论,利用利润=每件的利润×销售的件数,即可求得函数的解析式;(2)利用(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.解:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000;当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000.综上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)当1≤x<50时,y=-2x2+180x+2000,二次函数开口向下,对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050;当50≤x≤90时,y=-120x+12000,y随x的增大而减小,当x=50时,y最大=6000.综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元.方法总结:本题考查了二次函数的应用,读懂表格信息、理解利润的计算方法,即利润=每件的利润×销售的件数,是解决问题的关键.
a.第127页随堂练习1第(1)题。b.一个多边形的边都相等,这是一个正多边形吗?c.一个多边形的内角都相等,这是一个正多边形吗?d.所以,一个相等,也都相等的多边形才是。(此检测主要是让学说出多边形和正多边形的定义,因为是在三角形、四边形的基础上,定义是一致的,所以不深究。在教材的处理上,把正多边形放在了前面,两个较为简单的概念放在一起,便于学生理解和掌握。)2.各组展示四边形的内角和的计算方法。3.各组展示五边形的内角和的计算方法。(由各组派代表上台板演,其它组补充,真正让学生动起来)4.各组选择前面最优的方法,口述六边形、七边形的内角和的算法。(以此上,学生可以利用对比的方法,选择作出过三角形的一个顶点的对角线的方法,让学生探索发现规律。)5.据此,你们认为n边形的内角和应该怎样计算。(注意n的条件)五、当堂训练。
【说教材】 孔雀是孩子们喜欢的鸟类,他们在电视上、图书中见到过孔雀,而该活动进一步加深幼儿对孔雀的了解。《纲要》中指出:让幼儿感受生活的美,能用自己喜欢的方式表现自己的感受。因此我选择了这一活动,让幼儿大胆地展示自己。我班的幼儿大多数没上过幼儿园,在语言表达能力方面有些欠缺,但他们敢于用动作表现自己。【说目标】通过《纲要》的要求及对教材的分析,我制定了以下活动目标:(1)学习冠形、掌形和孔雀展翅的动作,能随音乐轻柔、优美地进行表演。(2)了解孔雀的外形特征和生活习性。(3)产生喜爱孔雀、爱护孔雀的情感。【说活动重、难点】从活动目标看出本节活动的重难点是:了解孔雀的外形特征及学习冠形、掌形和孔雀展翅的动作,并随音乐表演。
4.学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。四、说教学目标知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
教学过程 一、组织教学:(情景导入)播放《霸王别姬》这首歌,许多同学都非常喜欢这首歌曲,那么有谁知道它描写的是哪一历史事件。对,琵琶古曲《十面埋伏》描述的正是这一历史事件。公元202年“垓下大战”。这节课让我们一起来欣赏一首优秀的琵琶独奏曲《十面埋伏》。二、新课教学(一)简介乐器-——--琵琶A 琵琶是我国古老的乐器之一,半梨形音箱,面板为桐木,琴颈向后弯曲,钢丝尼龙弦,用人工指甲弹奏,空弦为Adea(6236)。B琵琶曲根据乐曲内容和风格分为文曲、武曲。文曲:节奏轻缓、抒情优美以描绘自然风光和内心情感见长。武曲:节奏复杂多变。情绪激烈雄壮富于戏剧性。
“楚汉相争”:垓下决战是我国历史上一次有名的战役。秦朝末年,陈胜吴广揭竿而起。在风起云涌的农民起义猛烈打击下,秦王朝宣告灭亡。此时,刘邦的汉军和项羽的楚军展开了逐鹿中原、争霸天下的斗争。到公元前202年,楚汉双方已进行了长达数年的战争,由于西楚霸王项羽骄矜、优柔寡断而一再坐失良机,错过消灭刘邦汉军的机会,到该下决战时,刘邦以三十万的绝对优势兵力包围了十万之众。深夜,张良吹晓,兵士唱楚歌,使楚军感到走投无路,迫使在乌江展开一场格斗,项羽因寡不敌众而拔剑自刎,汉军取得了辉煌胜利。
教学过程一、组织教学师生问好:(唱)。“一边倒”。二、导入新课(播放幻灯片并提问。)1、大屏幕上的乐器叫什么? 2、观看大屏幕,了解琵琶的基本构造。3、播放一首琵琶独奏曲的片段。4、听乐曲,试回答琵琶的音色。举例:你知道此乐器独奏的乐曲有哪些?5、欣赏乐曲片段,感受一下这首乐曲,使你想到了什么?(《十面埋伏》。)三、琵琶独奏曲《十面埋伏》。1、叙事曲。2、讲述和十面埋伏相关的历史楚汉之争。3、乐曲取材。4、播放琵琶独奏曲《十面埋伏》。 (师)跟随音乐进行讲解,每一段音乐情绪的变化,描写场景的变化等。四、《十面埋伏》不仅是我国琵琶武曲中的精品,也是人类音乐文化的瑰宝。并被誉为我国十大名曲之一。中国十大名曲有哪十首?(试回答。)五、课堂小结:今天我们了解了琵琶的结构;音乐体裁叙事曲的风格;重温了历史楚汉之争;历史与音乐相结合,感受了音乐的表现力
教师出示相关校园安全知识。(1)食品安全a. 不到没有卫生许可证的小摊贩处购买食品,选择新鲜和安全的食物;注意查看食品的保质期限、配方等安全信息。b. 养成良好的卫生习惯,饭前洗手。 c. 彻底洗净蔬果;不吃霉变的食物;不吃生食;尽量不吃剩菜剩饭。d. 保持健康的饮食习惯,不把饮料当水喝,不吃烧烤、油炸、烟熏及膨化食品,注意三餐定时定量。(2)人身安全 a.有序进出教室,上下楼梯靠右行,不拥挤或互相推搡。 b.在校园追跑打闹。不爬学校的围墙,门窗、围栏、树木、球架。 c.课外活动和体育锻炼,要按有关安全规则进行。在往返家校的路上,要注意交通安全,行路要严格遵守交通规则。 d.不得携带管制刀具,违禁物品进校园。(3)消防安全 a.不携带易燃、易爆、有毒物品等进入校园。 b.若插座、照明灯、电风扇等电器发生故障,不得私自动手排除,应报告教师或总务处,由学校电工进行故障排除。
五、活动背景:健康的心灵是我们幸福的源泉,只有接纳自己、喜欢自己、充满自信才有健康的心灵。然而,随着社会的发展,中学生中存在着许多的心理健康问题。为更好地对中学生进行心理健康教育、更好地优化学生的心理素质,促进学生的心理健康成长。更好地引导同学们积极关注自我发展,自觉维护和提升心理健康水平,让同学们的心理朝着阳光健康的方向发展,我们特开展以“心灵护航,快乐成长”为主题的中学生心理健康教育主题班会
佛山石湾陶瓷发展历史悠久,为了让幼儿感受这张靓丽的历史“名片”的魅力,了解石湾陶瓷栩栩如生的形象和一道道制作工序,在幼儿自己动手制作的过程中掌握简单的制作方法,体验成功感并领略石湾陶瓷的艺术美。
为幼儿提供各种材料,为幼儿的创造提供了更为宽泛的创造空间,孩子们通过动手、动脑,对创造产生了浓厚的兴趣。并给孩子一个自由、安全、宽松的环境,使孩子们能在这样的环境中“发现”和“探索”。利用情境式的动画效果,更使幼儿充满尝试和描绘的愿望。活动目标:初步引导幼儿学用各种材料和间隔的方法在圆圈内装饰。尝试用自己喜欢的材料、颜色和图案,大胆想象为小动物的汽车装配上美丽的轮胎。活动准备:废旧光盘、瓦楞纸、铅化纸、蜡光纸、回形针、橡皮泥、瓜子粒、油画棒、水彩笔若干等。范例:画好的车辆、三只轮胎、花鸭先生及汽车图片。
教学目标:1.充分认识安全工作的重要意义;2.在学习和生活中注意人生安全、饮食安全、交通安全等;3.进行预防灾害,预防突发事件的教育。教学过程:1.导入:列举出生活中的安全事例。2.安全工作的重要性a 公路上、公共场所的安全事故时有发生,是因为有的人安全意识不强。b 班级举例:学校发生的事故及后果。c 目前学校抓的几项工作。小学生应该注意安全的地方:1.学生讨论。2.集体归纳。(1)人身安全,在校园内或公路上不追逐打闹,不爬围墙,不爬树,不接近有电等危险地点,劳动时,注意安全,不与社会上不三不四的人交往,课外不玩火,不玩水。(2)交通安全,在公路上不追逐打闹,自觉遵守交通规则,交叉路口要注意行人车辆,通过公路要做到一停二看三通过。
教学建议:亿以内数的读法是在万以内数的认识基础上进行教学的,主要是让学生用已有的知识去类推,所以在教学本课时我们有必要对万以内数的认识进行有针对性的复习。如可采用口答形式复习数位顺序及各数位之间的十进关系。对于万以内数的读法,可以出示一组数据如:2005年路桥区前两个月共实现农林、渔业总产值17013万元,其中农业产品6383万元,林业产值94万元,渔业产值7560万元。在对万以内数复习的基础上我们再出示第2页主题图,让学生读一读画面上呈现的6个大数,也可以让学生说说身边听到,看到的大数。在这环节中我们就让学生凭着自己的理解运用旧知识去读数。这里学生肯定会造成认知上的冲突,从而引入新课教学。新课时可以按以下环节进行:1、计数器操作,认识计数单位用计数器数数,拨上一万,然后一万一万地数,一直数到九万后,再加一万是多少?认识十个一万是十万,用同样的方法,完成一百万,一千万,一亿的认识。
探究二:100以内数的大小比较。1、 (媒体出示课本第39页例8鸡蛋图。)师:看这鸡蛋图,谁知道哪边的鸡蛋多一些?你是怎么比较的?(学生可能回答:(1)根据鸡蛋图比较。(2)根据数的顺序比较。(3)根据数的组成比较。)(根据学生回答,点击○媒体出示答案。)2、 师:刚才我们看着鸡蛋图比较了两个数的大小,那如果没有图,我们会不会直接比较两个数的大小呢?我们请计数器来帮忙,谁来拨?(媒体出示计数器)师:谁能来说说每个数位上数的意义,再进行比较,说说比较的方法。(学生已经有了比较20以内数的大小的基础,教师引导学生在此基础上说出:28是由2个十和8个一组成,26是2个十和6个一组成,所以28>26;或者根据数数时28在26后面,所以28>26。)(点击表示28的计算器图,媒体出示28是由2个十和8个一组成;点击表示26的计算器图,媒体出示:26是由2个十和6个一组成;点击“26是由2个十和6个一组成”,媒体出示:28>26。)(师板书:28>26)
2、目标定位:根据大班幼儿年龄特点及实际情况以及布鲁纳的《教育目标分类学》为依据,确立了认知、能力、情感等方面的目标,融合了语言、科学、社会、艺术领域的整合。目标为:(1)通过各种方法引导幼儿发现自己的成长与变化。(2)激发幼儿欣赏自己的成长,展示自己的能力,树立自信心。(3)乐于与同伴交流、分享自己成长的快乐。(4)让幼儿尝试制作个人成长册,发展幼儿的精细动作。(5)让幼儿体会父母的辛苦、关心,增进亲子之情。 根据目标,我把活动重点定位于:感受“我长大了”,主要是发现自己成长与变化。通过观察、比较小时候的照片和用品、播放录像、交流分享、展示自己,使活动得到深化。活动的难点是:根据人的成长过程进行排序、制作个人成长册,主要是通过自主操作,在动手的过程中培养手部肌肉的灵活性和提高排序的能力,对自己的成长充满了期待。在目标定位上,树立了目标的整合观、科学观、系统观,各领域内容有机联系,相互渗透,注重综合性、趣味性、活动性,寓教育于生活、游戏中。因此,我作了以下活动准备:(1)空间准备:幼儿小时候的照片、衣物、用品布置于墙上,桌椅呈同字型便于评价和集中。(2)物质准备:“人的成长过程”图片,卡片纸、彩笔、彩纸、剪刀、胶水等美工材料与工具若干,已制作本领树的树干,小时候的录像(或小中班在园的录像),胎儿的生长发育以及新生儿的养育的录像。(3)知识准备:幼儿向家长了解爸爸妈妈的故事及自己小时候的趣事,观察各个阶段自己成长的照片,熟悉人物主要特征。
《贝壳》是人教版七年级上册第四单元中《短文两篇》中的一篇,这一单元以抒发人生感悟为主题,其学习要求是整体把握课文内容,联系自己的生活体验,想想人生的大问题。《贝壳》是一篇托物抒怀的散文,作者席慕蓉作为女性作家,写了一系列极为精致、极蕴内涵的小品,《贝壳》正是其中的佼佼者。