“创意无限,匠心支撑”。当下,创新创业大潮涌动,“互联网+”颇受青睐,大批创客投身其中。这里头有脚踏实地的深耕者,但也有不少一天到晚想着如何造噱头、拉投资,幻想借互联网的东风,“抄一把就走”之人。与此相应,很多产品往往火了一把便再无踪迹。如此“创”法,除了搅出些过时即破的泡沫,难言价值。创新创业不应成为浮躁的代名词,那些真正成功的互联网神话缔造者,远非鼓吹概念、贩卖情怀这么简单。很多大佬正是以其对细节近乎严苛的追求向大家证明,只有“互联网+工匠精神”,才能出优质产品。
二万五千里长征,一次改变中国人命运的征程已在人们的评说中去过了大半个世纪。照现代社会这种急速更新换代的观念,早已是好几个时代过去了。按我们熟悉的某种号召“过去的就让它过去吧”。再说下去,就成了枭鸣似的烦扰,不免令人生厌。然而长征却不同。人们总在不断的言说、探究、拷问。我想或许是由于长征所代表的一种精神吧――一种全人类永恒追求的精神――坚持到底。 “红军不怕远征难”的精神!正因为这心中永存的信念,红军才有了“万水千山只等闲,五岭逶迤腾细浪,乌蒙磅礴走泥丸”的英雄气概!正因为这心中永存的信念,才有了“亲人送水来解渴,军民鱼水一家人”的温情!
师德是教师人格的重要组成部分,而师德中爱与责任则是师德的灵魂。我们的爱,首先是要爱岗敬业。所谓爱岗敬业就是人们对所从事的职业的一种虔诚、一种执着、一种深情的眷恋,从而进行孜孜不倦的工作。优秀教师无不把教育事业看作是自己的生命。也许正是以这种爱与责任为出发点,他们才能不停地教育自己,完善自己,才能更靠近学生。 我们的的爱,其次是要爱学生。师爱应该是一种真正纯洁的爱,是只讲付出不计回报的爱。师爱应该是一种平等的爱,是无私广泛没有血缘的爱。师爱的基础是平等以感情赢得感情,以心灵去感受他们的感受。师爱应该是一种公正公平的爱,是惠及全体而没有差异的爱。对每一个学生教师应公平、公正,经常与学生谈心,使他们感到老师在意、关心他们。但是关爱是有条件的,有限制的,教师要做到爱而有度,爱而有格。
二是林下经济初具规模。2023年,省下达我州利用林地发展林下经济面积达到xxx万亩、产值达到xx亿元。前三季度全州累计经营和利用林地发展林下经济面积xxx.xx万亩,产值xx.xx亿元,面积年度目标任务完成率xxx.xx%,产值年度目标任务完成率xx.xx%,预计到年底全州经营和林下经济利用面积、产值均能完成年度目标任务。我州现有国家级林下经济示范基地x个(xx县、xx县、xx县、xx县各x个),林下经济类定制药园xx家。三是森林康养基础提升。截至目前,我州有国家级森林康养试点基地x个,省级森林康养试点基地x个,xx森林康养基地正式被xx省林业产业联合会授牌“省级森林康养基地”。四是花卉产业特色凸显。全州现有花卉种植面积xx.xx万亩,其中观赏花卉种植面积x.xx万亩,现有重点花卉企业有xx家,其中重点企业x家;xx州xx动植物科技开发有限公司获得国家林业重点龙头企业称号,实现了我州国家级林业重点龙头企业零的突破。x月xx日至xx日,第十四届xx省兰花博览会在xx市xx产业博览园盛大开幕,x万多株参展兰花吸引了来自全国各地的“兰迷”们相约盛会,本次博览会共展出x万多株兰花,约xxxx个品种,其中部分保育的新品种首次亮相。
要进一步强化质量效率意识。对于工作质效的占位低标准低、态度粗工作粗、质量差效率差等影响工作落实的突出问题,每月进行1次梳理,每季度进行1次通报,对连续2次被通报的责任人视情节轻重予以处理;及时发现工作中存在的问题,纠偏工作偏差,解决流程不畅,服务质量不高的问题;组织开展八届市级劳模巡回宣讲活动,讲好劳模故事、劳动故事、工匠故事培育广大干部职工工匠精神。铜仁市工会五年工作综述每一个五年,都是一次跨越;每一个五年,都是新的征程。过去五年,在市委和省总工会的坚强领导下,在改革后的新一届工会领导班子的带领下,全市工会上下同心、全力以赴,坚持增强“政治性、先进性、群众性”,在服务大局中显身手、在服务职工中聚力量。过去五年,全市工会以改革创新为引领,紧紧围绕中心、服务大局,认真履行维护职工合法权益、竭诚服务职工群众的基本职责,以新气象、新姿态、新作为充分彰显了工会的使命与担当。
一、基本情况xxxx年我县通过,公开、公平、公正的方法,按照上级文件和《xx县xxxx年全县农民培训工作方案的通知》(x农字(xxxx)xxx号)的要求,遴选了xx县旅游工业中等专业学校为培训工作的第三方,确定了培训对象为家庭农场主、农民合作社带头人、种养大户。按照工作方案要求,已全部完成任务,即经营管理型xxx人,技能服务型xx人,共计培训xxx人。二、项目组织开展情况(一)领导重视。按照省、市文件精神,我县各级领导对高素质农民培育工作非常重视,县成立高素质农民培育工作领导小组。在高素质农民培育过程中,县农业农村局长到实训现场指导培训工作。(二)精准遴选培育对象。根据《xx县xxxx年高素质农民培训工作实施方案》,认真开展了培训对象的遴选。重点面向家庭农场主、农民合作社带头人和种养大户,统筹推进新型农业经营和服务主体能力提升、种养加能手技能培训、农村创新创业者培养、乡村治理及社会事业发展带头人培育等行动,大力培养高素质农民队伍。
作为全国公民法治素养提升行动8个试点地区之一,成都的试点工作目前正处于全面实施阶段。作为试点地区的一分子,新津区勇挑试点重担,在精准普法方面下功夫,第一时间制定试点工作方案,细化24条措施,新津区普兴街道岳店社区、新津实验高中被确定为成都市公民法治素养观测点位。在实施国家工作人员“法治提能”行动中,新津区将法治建设成效纳入区管领导班子和领导干部年度考核内容,区政府常务会开展会前学法72场次,全区66家单位接入四川省学法考法平台,共计2766名国家工作人员参与年度学法考法。实施青少年“学法筑基”行动的关键,就是要把法律知识变得有趣,让青少年听得懂、学得会、记得住。为此,新津区选派54名政法干警担任中小学校法治副校长,打造新津中学、新津一小、新津实验高中3个特色青少年法治教育阵地,并依托法治教育阵地开展专题教育活动180余场。
(五)持续强化林产培育。2023年,全州林业总产值目标任务xxx亿元,前三季度完成林业总产值xxx.xx亿元,完成率xx%;全州录入投促系统的林业招商引资到位资金x.xx亿元。一是特色林业稳步发展。2023年,全州特色林业产业基地建设面积任务x.xx万亩,产量任务为x.xx万吨,产值任务为xx.xx亿元。前三季度完成特色林业基地建设面积x.xx万亩,产量x.xx万吨,产值为xx.xx亿元,面积年度目标任务完成率xx.xx%,产量年度目标任务完成率xx.xx%,产值年度目标任务完成率xx.xx%,预计到年度特色林业基地建设面积、产量、产值均能完成年度目标任务。二是林下经济初具规模。2023年,省下达我州利用林地发展林下经济面积达到xxx万亩、产值达到xx亿元。前三季度全州累计经营和利用林地发展林下经济面积xxx.xx万亩,产值xx.xx亿元,面积年度目标任务完成率xxx.xx%,产值年度目标任务完成率xx.xx%,预计到年底全州经营和林下经济利用面积、产值均能完成年度目标任务。
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。