随着自己的不断长大,发现我们身上的责任也越来越大,因为我们是新时代的青年,我们要做好自己的责任,要努力学习。都说我们是垮掉的一代,实际上并不是,我们是抗疫的主力军,冲在最前面为国家人民保驾护航! 共青团建团百年作为新时代的的青年,我们要树立爱国主义精神,国家的前途,民族的命运,人民的幸福,是当代中国青年必须和必将承担的重任。 以便以后为国家和人民献上自己的一份力,在不远的将来我们国家会越来越好,中华民族屹立于世界民族之林,实现中华民族伟大复兴。
新时代青年应该立鸿鹄之志,展骐骥之跃,青年当系好人生第一粒扣。红日初升,其道大光;河出伏流,一泻汪洋。青春只有一次,谁也不应做青春的看客。中共一大召开时的13名代表平均只有28岁,而这支年轻的队伍却在风雨中迅速成长为中国人民和中华民族的主心骨。黎巴嫩的诗人纪伯伦说过,不要因为走的太远,而忘记了当初为什么出发。青年人更要扣“正”人生的第一粒扣,筑牢信仰之基,补足精神之钙,把稳思想之舵,走好人生的“每一步”。
传统的数学教学因为过分预设和封闭,使课堂教学变得机械沉闷,缺乏生气和乐趣,学生始终处于从属地位,成了教师灌输知识的容器,课堂上倦怠应付,与创造的喜悦无缘,师生都无法在课堂上焕发生命的活力。 教学过程是师生交往、积极互动、共同发展的过程,是为学而教,以学定教,互教互学,教学相长的过程。教师必须改变传统的压抑学生创造性的教学环境,通过教学模式的优化,改变教师独占课堂、学生被动接受的信息传递方式,促成师生间、学生间的多向互动和教学关系的形成。
之前常常为工作中的小事,因为不理解而情绪激动或是郁闷,但是随着时间的推移,我了解了也明白了许多:护士所做的工作就是护理患者,让患者受益,让患者满意,更要让患者尽快的康复!这就是我的工作!患者对我提出的意见那是我的不足,并不是他们无理的要求!如果连患者的需要我都没有了解到、没有及时地给予,那就是我的失职,更没有资格去谈工作的高尚了!只有患者的赞许才最高的荣誉! 在护理工作中我们应该是“做”和“说”同时进行的,甚至有些时候“说”要比“做”来得更为重要。在与病人沟通中技巧占据着很大的因素,我们科的责任护士在这方面有着很深的“功力”,让人不得不服。 从工作中使我意识到护理工作要顺利展开,首先要取得患者信任,信任是双方交往的基础,是人和人之间最美丽的语言。在交流过程中,要讲究语言的艺术性,避免套用生硬的医学术语,善于使用非语言沟通技巧,运用亲切的目光,良好的言行举止,缓和患者因紧张造成的紧张心理,使患者积极配合治疗,最后获得双羸。 “信任”是我们护士和病人之间最好的桥梁,让我们把这座桥梁搭得牢固些吧,用我们的细心,获取患者的舒心!
时光易逝,光阴难留。就在这个即将结束的六月里,又一批心怀理想的少年交出了他们的青春答卷。看吧——在紧张严肃的考场里,同学们信心满怀,堂堂正正,以笔为剑,披荆斩棘,令人钦佩;却难免有人别有用心,企图投机取巧,来攫取本不属于自己的高分,妄图破坏考试的公平性,令人不耻。这般行为与盗窃何异?考场如一面镜子,照出诸生百态,个人诚信与否就这样显露无余。这一幕幕场景再一次提醒我们:贯彻诚信考试精神,坚决拒绝舞弊作假。孔子曰:“人而无信,不知其可。”诚信,乃立德之本,树人之根。它是培养美德的基本要求,也是中华民族的优秀传统。而在检测能力水平的考试中,诚信就显得更加重要。我想:占小便宜的心理是导致作弊行为的原因,爱慕虚荣是诚信的死敌,也正是生活中许多不良现象的源头。
尊敬的各位领导、老师,亲爱的同学们,大家上午好,我是来自高三班的张xx,很荣幸能在国旗下发言,今年是xx学校建校十周年,借此机会,我向广大同学发出号召:“优化良好的校园人文环境,喜迎十周年校庆盛典”同学们,首先,我想问你们一个问题:“如果有这样一个校园环境,那里垃圾遍地,臭味熏天,随时都可能和苍蝇来个人虫共舞。走在校道上,你还得学会迷踪步,因为一不留神就可能会遭到高空坠物,又或者踩到香蕉皮,技术好的话或许还有个漂亮的后空翻。但是,同学们,你们愿意在这样的环境中学习与生活吗?”相信大家都不大情愿吧!我们都知道,校园是我们学习与生活的场地,休闲与放松的乐园,只有拥有了一个良好的校园人文环境,才有舒适、美好的校园生活。同时,校园环境也是学校的一个窗口,直观地反映了学校的精神风貌,体现了学校的文化氛围。洁净、舒适的校园人文环境不仅是我们学习生活的需要,而且是陶冶情操的需要,营造良好的校园环境是我们每个人的神圣职责。走在干净整洁的校园内,几个同学间有说有笑地散着步,望着蔚蓝的天空,看着青葱的绿树,呼吸着清新的空气,又或者坐在树荫底下的石凳上津津有味地品读着课外书,这才是我们所追求的生活。
各位老师,各位同学:今天我发言的题目是打造闪光的个人,最近《中国青年报》分两期刊发了长篇报道《不可阻挡的价值发现》,全文指出了中国的人才正告别物美价廉的时代,跨向高素质高文化的时代,摆在中国人才面前的是光辉的前景,但文章也指出由于中国教育本身存在的痼疾,中国本土人才的素质与底蕴是否能够抵挡住全球化的竞争,这依然是个未知数。面对这场竞争,我们该如何去面对?我们提出“打造闪光的个人”这个张扬个性的口号,但我认为要打造闪光的个人必须先和我们同学探讨几个基本的问题。一、建构自己心中的道德标准这也许是一个老生常谈的问题,但关键在于道德标准它的价值核心将引导我们做出合理的判断和正确的行动。这种引导与判断将在以后的人生道路中左右我们人生的航向正因为我们学会了明辨是非,做人做事才信念坚定;正因为学会了服务他人,做人做事才义利和谐;正因为我们学会了诚实可信,做人做事才会心安理得,才妥帖了国际竞争的核心标准……,而越来越多的事实告诉我们因为是非不辨,因为见利忘义,因为欺骗欺诈,我们在毁掉眼前利益的同时,也在毁掉以后的发展,更在毁掉做人的基本体面。
同学们:大家好!在这充满希望与憧憬的春天里,我首先应对你们讲些什么。我选择了很多内容,但最终还是决定先给你们讲个故事:某公司招聘一名职工,应聘者很多,最后一个其貌不扬的人被公司选中了,其他应聘者不服,就去公司问老板。老板说聘用他的原因是只有他带来了许多“介绍信”:他在门口蹭掉脚下的泥土,进办公室后随手关上门,说明他做事仔细、认真;他看到那个残疾老人,立即起身让座,表明他心地善良、体贴别人;应聘时他先脱掉帽子,回答问题干脆果断,说明他既懂礼貌又有魄力;其他人都从我故意放在地板上的那本书上迈过去,只有他俯身捡起它并放回桌上……这些不是很好的介绍信吗?把工作交给这样的人不是很让人放心吗?同学们,一滴水蕴藏着大海的本质,一束光反映了太阳的光辉,一件小事折射出一个人的修养。听了这个故事,你是否知道如何对待手中的一张废纸
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。