2.四则运算的意义。(1)知识梳理师:我们学过哪些运算?举例说明这些运算的含义。生:把两个(或几个)数合并成一个数的运算,叫做加法。 已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。 求几个相同加数的和的简便运算。 已知两个因数的积与其中一个因数,求另一个因数的运算。 师:整数、小数、分数四则运算有什么相同点?学生交流后师总结:加减法:都是把相同计数单位的数相加减。乘除法:小数乘除法把除数转化成整数再计算。分数除法要转化成分数乘法计算。师:整数、小数、分数四则运算有什么不同点?生:小数乘、除法还要在计算结果上确定小数点的位置,分数除法转化后乘的是除数的倒数。师:如果有0或者1参与四则运算,有哪些特殊情况?(学生讨论交流)生:任何数加减0都得原数。
【教学过程】(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、成正比例的量有什么特征?2、正比例关系式。生1:两种相关联的量,一种量变化,另一种量也随着变化。生2:两种量中相对应的两个量的比值(商)一定。生3:=k(一定)。师:同学们非常棒!我们今天继续学习两种量的另外一种关系。 (板书:成反比例的量)【设计意图】这种方法的导入,简简单单的一道练习题,把学生的注意力吸引到本节主要内容上来,激起学生的好奇心,真的还有另外一种关系!我可得好好听一听。这样在学习反比例时学生会始终保持高度的精神集中,有利于教师教学顺利进行。(二)探究新知教学例2,探究反比例的意义,理解成反比例的量。1、出示PPT课件回答问题。杯子的底面积与水的高度的变化情况如下表。 杯子的底面积/cm²1015203060…水的高度/cm302015105…观察上表,回答下面的问题。(1)表中有哪两种量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?生1:表中有杯子的底面积和水的高度这两种量。生2:从表中可以看出:水的高度随着杯子的底面积的变大而不断变小,这两种量是相关联的两种量。生3:我来回答(3),相对应的杯子的底面积与水的高度的乘积分别是:10×30=15×20=20×15=30×10=60×5=…=300。生4:乘积一定。师:底面积与高的乘积表示的是什么?生:水的体积。(板书)师:你会算出水的体积吗?生:会。(学生计算,教师出示课件订正)2、揭示反比例的意义。师:积是300,实际就是倒入杯子的水的体积。同学们能用式子表示出它们的关系吗?生:它们的关系是:底面积×高=体积。师:同学们,我们用概括正比例意义时的方法来概括一下反比例的意义吧!生:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。(板书反比例的意义)3、用字母表示反比例关系:xy=k(一定)。(板书)4、牛刀小试。锅炉房烧煤的天数与每天烧煤的吨数如下表: 每天烧煤的吨数/吨11.522.53烧煤的天数/天3020151210(1)表中有哪两种量?它们是不是相关联的量?(2)写出几组这两种量中相对应的两个数的积,并比较大小,说一说这个积表示什么。(3)烧煤的天数与每天烧煤的吨数成反比例吗?为什么?【参考答案】 (1)每天烧煤的吨数和烧煤的天数,是相关联的量。 (2)1×30=30 1.5×20=30 2×15=30 2.5×12=30 3×10=30 积相等,这个积表示这批煤的总吨数。 (3)成反比例,因为烧煤的天数与每天烧煤的吨数的积一定。【设计意图】学生通过观察、发现、概括经历了整个学习过程,逐步形成定向思维方式,为学会学习打好基础。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:求比值,完成后,说说求比值的方法,这三个比值是什么关系?18∶12 27∶18 2.4∶1.6生1:用比的前项除以比的后项。生2:这三个比值相等。……【参考答案】 18∶12= 27∶18= 2.4∶1.6= 求比值的方法是用比的前项除以比的后项,这三个比值相等。【设计意图】比和比值是解决比例意义的关键所在,只有唤醒学生已有经验,才能更好地让学生投入到学习比例意义活动中来,为实现教学目标做好铺垫。(二)探究新知师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢? 生1:我们的国旗是红色的,上面有五颗黄色的五角星。生2:我们的国旗是长方形的。师:同学们回答得真好,说出了自己对国旗的了解,可以看出同学们对我们国家的热爱,老师希望你们一定要好好学习,为我们的五星红旗增光!五星红旗是庄严而美丽的, 并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容——比例。(板书课题:比例的意义)国旗长5米,宽米。国旗长2.4米,宽1.6米。国旗长60厘米,宽40厘米。
(一)观图激趣、设疑导入 1、(PPT课件出示复习题)2、引导学生复习比例尺是图上距离与实际距离的比,并进行相应的计算。生1:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。生2:图上距离∶实际距离=比例尺或=比例尺。(PPT课件出示问题)在一幅地图上量得A地点到B地点的图上距离是5 cm,已知这幅地图的比例尺是1∶4000000,那么A地点到B地点的实际距离是多少千米?师:在这里已知的条件有哪些?生1:知道两地的图上距离是5 cm。生2:知道比例尺是1∶4000000。师:要解决的问题是什么?生:计算两地的实际距离是多少千米。师:这节课我们就接着来学习比例尺的应用,学习如何利用比例尺来解决实际问题,也就是已知比例尺和图上距离,求实际距离。(板书课题)【设计意图】通过把复习题中的习题变换已知和未知条件来变成本节课要解决的问题,使学生产生浓厚的兴趣,并且,也有助于培养学生举一反三、触类旁通的能力,使学生认识到数学知识的灵活性。(二)探究新知探究学习例2,已知比例尺和图上距离,求实际距离。1、PPT课件出示P54例3。下面是北京轨道交通路线示意图。地铁1号线从苹果园站至四惠东站在图中的长度大约是7.8 cm,从苹果园站至四惠东站的实际长度大约是多少千米?2、引导学生分析探究:师:从例题中可以知道哪些已知条件?生:可以知道两站的图上距离大约是7.8cm。师:这是从题目中直接读出来的,那么从所给的图中还能观察到什么条件呢?生:可以知道比例尺是1∶400000。布置学生小组讨论怎么样解决问题。学生以小组为单位进行合作学习,教师进行指导。3、汇报学习成果,师生共同探究:师:你们是怎么解答的?生1:通过列方程来解答的。生2:根据题意,可以先设实际长度为x cm,再根据“图上距离∶实际距离=比例尺”,列方程解答。师:解答时要注意什么?生1:要求实际距离是多少千米,但已知的图上距离是多少厘米,可以先设实际距离为x cm,算出实际距离的厘米数后,再化成千米数。生2:根据“图上距离∶实际距离=比例尺”,可以用解比例的方法求出实际距离。4、完成解答:(板书解题过程)图上距离:实际距离=比例尺解:设从苹果园站到四惠东站的实际长度是x cm。=x=7.8×400000x=31200003120000 cm=31.2 km答:从苹果园站到四惠东站的实际长度大约是31.2 km。5、拓展延伸:师:我们除了用方程解答之外,还可以用什么方法解答?生:可以用算术方法解答。师:可以怎样来分析呢?生:在“图上距离∶实际距离=比例尺”中,实际距离既可看成分数的分母,又可看成除法中的除数,所以可得出实际距离=图上距离÷比例尺。师:我们来共同完成解答:(板书过程)图上距离:比例尺=实际距离7.8÷=3120000(cm)3120000 cm=31.2 km答:从苹果园站到四惠东站的实际长度大约是31.2 km。6、牛刀小试。(1)师:我们一起来做两个练习题,看我们对新知识的掌握程度如何。(PPT课件出示)①教材P54做一做。先把教材P54做一做的图中的线段比例尺改写成数值比例尺,再用直尺量出图中河西村与汽车站之间的距离是多少厘米,并计算出两地的实际距离大约是多少。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。1、谈话导入(PPT课件出示脑筋急转弯)。师:同学们,老师这里有一个脑筋急转弯,一起来猜一猜把!生1:因为蚂蚁是在地图上爬过去的。2、揭示课题。师:同学们可真聪明!是的,地图上的距离是按一定的比把实际的距离缩小了画在图纸上的。今天我们就来研究这个问题:比例尺。(板书课题)【设计意图】运用学生熟悉的现象导入,给学生带来的是愉快的心情和积极的学习态度,顺其自然进入学习状态,达到导入的目的。(二)探究新知教学比例尺的意义及种类,理解比例尺的含义以及关系式。1、阅读教材第53页关于比例尺的内容。师:阅读教材后,汇报你知道了哪些关于比例尺的知识。生1:通过阅读我知道:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。图上距离∶实际距离=比例尺。(板书比例尺的意义)=比例尺生2:比例尺是绘图时用的,它是把实际距离按一定的比缩小或扩大,再画在图纸上。生3:教材介绍说,地图上的比例尺有1∶100000000,这是数值比例尺,它也可以写成这种形式,也叫数值比例尺。(板书)生4:老师,我看见这样表示比例尺的: 师:这叫线段比例尺。 它表示的是:图上1厘米的距离相当于地面上50 km的实际距离。(板书)生5:我会把上面的线段比例尺改成数值比例尺。图上距离∶实际距离。=1 cm∶50 km=1 cm∶5000000 cm(单位要相同)=1∶5000000(板书过程)生6:比例尺1∶5000000表示图上距离是实际距离的。实际距离是图上距离的5000000倍。
(一)复习导入 1. 师:同学们,你们经常去超市吧?超市里有时候会有打折的活动,你知道什么是打折吗?(课件第2张)生:商店有时降价销售商品,叫做打折扣销售,俗称“打折”。2.你知道打折的含义吗?几折就表示十分之几,也就是百分之几十。比如打七折,就是按照原价的十分之七出售,也就是按原价的70%出售。这节课我们就来学习有关折扣的知识。(课件第3张)【设计意图】联系学生的生活实际引入课题,引起学生学习兴趣,使学生体会到生活中处处有数学。(二)探究新知 1、探究折扣的含义,计算打折后的价钱。(课件第3张)(1)星期天,小雨和爸爸来到商场买东西,正好赶上打折活动。小雨问爸爸:什么叫做“八五折”?你能回答小雨的问题吗?生1:“八五折”就是按原价的85%出售。你知道“九折”是多少吗?生2:“九折”就是按原价的90%出售。(2)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?你会列式吗?(课件第4张)小组合作:你是怎样想的?说说你的思考过程。(课件第5张)(3)汇报交流:生1:把原价看做单位“1”,打八五折就是按原价的85%出售。(课件第6张)生2:现价=原价×折扣,求现价,做乘法。生3:180×85%=153(元)答:买这辆车用了153元。2、探究计算打折后便宜了多少钱的方法。爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少元?(课件第7张)(1)小组讨论:先求什么?再求什么?说说你的思考过程。生1:我先求现价是多少,再求比原价便宜了多少元。(课件第8张)列式为:160×90%=144(元)160-144=16(元)答:比原价便宜了16元。生2:我先求现价比原价便宜了百分之几,再求比原价便宜了多少元。(课件第9张)列式为:160×(1-90%)=160×10%=16(元)
(一)激趣导入 课件出示一些图片:师:同学们,今天老师给你们带来了一些礼物,大家想不想知道是什么?我们一起看大屏幕:你们认识这些物体吗?在生活中见到过吗?生:比萨斜塔、治安岗亭、茶叶盒、客家围屋。师:今天这节课我们重点来研究这些物体。(二)探究新知 1. 认识圆柱。师:这些物体什么形状的?它们的形状有什么共同特点?生:这些物体都是圆柱形的。师小结:这些物体的形状都是圆柱体,简称圆柱。说一说生活中有哪些圆柱形的物体。2.探究圆柱的特特征。(1)认识底面小组活动: 观察圆柱形物体,看看它是有几部分组成的,有什么特征?课件演示:圆柱的上、下两个面叫做底面,是两个完全相同的圆。 师:请同学们量一量、算一算圆柱的两个底面有什么关系?生1:两个底面的直径相等、半径相等。生2:两个底面的周长相等、面积相等。师小结:圆柱的底面是两个完全相同的圆。(2)认识侧面课件演示:圆柱周围的面叫做侧面,侧面是一个曲面。师:请同学们指一指圆柱的侧面,再用手摸一摸,有什么感觉?生:侧面是弯曲的。师:侧面是一个曲面。
教学目标:1、在仔细观察常用文具的基础上,启发学生设计造型新颖、色彩鲜艳的各种常用文具。2、引导学生运用橡皮泥表现各种文具的形象,提高学生立体表现能力。教学重点:打开学生积极、丰富的创造性思维,引发对文具造型的兴趣。
2学情分析这是一个学生比较感兴趣的内容,通过学习不仅能提高学生的学习欲望,更希望能根据一句话或者一段话以画画的形式表现出来。3重点难点重点:了解绘画故事的表现特点,感受真、善、美。绘画自编故事的创作特点及步骤。难点:选材、构思设计、构图与绘制。
学生自由编题后,教师出示:跷跷板乐园有3个跷跷板,每个跷跷上有4人在玩,还有7人在旁边看。跷跷板乐园里一共有多少人?(2)全班读题后提问,题目的已知条件和问题是什么?根据题目的已知条件,能不能一步就算出跷跷板乐园里一共有多少人?(不能)那我们要求“跷跷板乐园里一共有多少人?”应该知道什么条件?(有多少人在玩?旁边有多少人?)大家想一想我们第一步要先算什么?(有多少人在玩跷跷板)根据题目的哪些条件可以求出“有多少人在玩跷跷板”?(有3个跷跷板,每个跷跷板上有4人在玩)怎样列式?[4X3=12(人)]为什么用乘法计算?(因为它是求3个4是多少,所以用乘法计算)现在我们已经知道有12人在玩跷跷板,那第二步该算什么?(跷跷板乐园里一共有多少人)怎样列式?[127=19(人)]谁会用一个算式表示?[4X37=19]请一个同学说一说每一步表示的意思。应用题解答完要记住写答案。
4、比较两种作图方法的异同。【设计说明:教学要遵循循序渐进的规律,先安排学生在已知直线上任意点画已知直线的垂线,使学生很快就能引用相同的方法画出经过已知直线上和直线外的点的垂直线段,后两种画法的比较能使学生明确两种画法的小区别】5、看书例2第(3)题,创设情境:为了方便阳光小区居民乘车,公交公司准备在通往建设路上设立一个站牌,这个站牌应该设立在什么位置?各小组讨论,设计合理的站牌。教师提示:想一想可以画多少条线段?你能试着画出一条垂直的线段和几条不垂直的线段吗?各小组汇报:经测量,站牌设立在阳光小区与建设路所画的垂足出最合理。引导归纳:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。【设计说明:将概念教学设计为问题情景,形式新颖,寓教与乐,不是单纯生硬枯燥的训练和死记硬背,而是在活动实践中体验和自悟】
3、归纳求最小公倍数的方法。师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)4、看书88——89页,你还有什么问题?师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。三、解决问题,深化理解(练习是理解知识,掌握知识,形成技能的基本途径,又是运用知识,发展智能,完善认知结构的重要手段。
一、说教材:我说课的内容为六年级下册的《比例尺》。这节课是在学生学完“比例的意义和基本性质”、“正、反比例的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也很有现实意义。 教学目标1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。重点:理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。难点:从不同的角度理解比例尺的意义二、说学生: 六年级的下学期的学生,对于各种图形有着丰富的生活经验,所以,讲解有关比例尺的知识,学生有感性认识,同时也会饶有兴趣的。
这节课的教学内容是在学生学习掌握了圆和圆柱的相关知识的基础上而安排的。认识圆锥,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面的学习做好铺垫。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排在圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。二、说学情我所教学班级的学生是山区的孩子,经过前面的学习他们的主观性和能动性已经有较大的提高,能够有意识地主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高,也有一定的动手操作能力。但抽象逻辑思维在很大程度上仍然靠感性经验支持,加上他们生活在山区,对新生事物的见识面相对较窄,所以在教学时适宜恰当地运用远程教育资源,既能创设教学情境,又能将抽象的知识直观化,更加直观地体验感知圆锥的特征。
在运用定律进行简便计算时,学生仍然出现这样那样的错误,这一点我们在备课中应有所意识,适当调整课时安排,并充分考虑学生练习中可能出现的错误,加强易混知识的辨析练习。 四、教学目标:1、认识目标:使学生理解并掌握从一个数里连续减去两个数的几种常用算法,并能根据具体情况选择合适的方法进行简便计算。2、能力目标:培养学生根据实际情况灵活选择算法进行计算的意识与能力,提高学生观察比较能力和思维的灵活性,发展学生思维。 3、情感态度价值观目标:通过学习活动,激发学生的学习兴趣,使学生感受到数学与现实生活的联系,学会用所学知识解决简单的实际问题。 五、教学重点: 理解并掌握从一个数里连续减去两个数的几种常用算法,并运用其进行一些简便计算。
4、完成教科书第65页练习十的第6题。让学生根据每种商品在每家商店中的售价情况,选择便宜的买。要学生解释什么叫便宜。(就是这几个数中最小的数)5、完成教科书第65页练习十的第7题。先让学生独立完成后,教师讲评时得问学生是怎样比较这几个数的大小的?(比较几个小数的大小时,可采用排列的方法,将几个数竖着排下来,注意数位对齐,也就是小数点对齐,这样比较起来较快,又不容易产生错误)练习中我注重辅助差生掌握新知,并鼓励他们的点滴进步,让他们感受到功成的喜悦。在教学中我利用幻灯教学,有利于培养学生的智力和能力。借助幻灯直观、形象、感染力强,便于数形结合的特点,调动学生的主观能动作用,促进学生积极思维,使课堂教学节奏加快,从而年高课堂教学效率。
一、说教学内容本节课的教学内容是人教版小学四年级下册数学课本第50-51页的例1和做一做,以及第55页的练习九第1-3题。这一内容,既是前面在三年级“分数的初步认识”和“小数的初步认识”的基础上的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。教材中简要呈现了“小数产生的”过程,通过实际测量黑板、数学课本,使学生体会小数的产生的原因。例1,教材分三个层次编排:先通过分米数改写成米数,说明十分之几的数用一位小数来表示;再通过厘米数改写成米数,说明百分之几的数用两位小数来表示;然后通过毫米数改写成米数,说明千分之几的数用三位小数来表示。
教师随着学生的回答用卡片拉出0.6000000…00[约有1.5米长],问:大小变了吗?[学生非常惊奇和振奋地说:没变!]如果它末尾的0像北京奥运圣火那样穿越五洲四海,它的大小变吗?[学生异口同声:不变!]也就是说与0.600大小相等的小数有多少个?师:在这无数个小数中,最简单的是哪一个?师:当我们遇到小数末尾有零,可以去掉末尾的零,写起来更简便,这就叫做小数的化简。(板书化简)说说是根据什么进行化简的?师:你能把0.40 1.850 2.900 0.080 12.000化简吗?请大家打开数学书59页做一做第一题,写在数学书上。【0.080】师:这个0为什么不去掉,去掉会怎么样?【12.000】师:运用小数的性质,我们可以把三位小数化简成整数。师:那你觉得在运用小数的性质化简小数的时候,应该注意什么?
教材分析:小数加减法简便运算这节课是九年义务教育课程标准实验教科书人教版小学数学四年级下册第六单元的第二节课。它是在学生已经熟练掌握了整数的运算定律与简便计算,认识了小数的意义和性质,掌握了用竖式计算小数加减法的基础上安排的教学内容,是数的运算中不可缺少的内容.学情分析:对于小数加减法简便运算,学生有似曾相襄助的感觉.教材紧紧抓住学生的这一认知特点,引导学生得用已掌握的整数加减法简便运算的旧知迁移支小数加减法简便运算这一新的情境中.,通过让两位学生推测校运动会中本班4×100米接力的成绩,体现对班集体的热爱之情.教学目标:1让学生理解整数的运算定律在小数运算中同样可以应用.2能根据数据特点正确应用加法的运算定律进行简便运算.
设计意图:在游戏中巩固策略,提高学生学习兴趣,缓解学习疲劳。这个游戏的“揭密”过程关注方法的多样化,让学生体会列方程的策略和倒推策略之间的联系,把新旧知识进行了有机地融合,以培养学生思维的灵活性和发散性。四、课堂小结 提升策略提问学生:这节课你学会了应用什么策略解决实际问题?什么类型的题目适合用今天的策略解答?用这样的策略解决实际问题要注意什么?你还有别的收获吗?设计意图:突出主题,让学生总结本课的学习内容和学习重点;同时关注学生的个性发展,引导学生进行个性化的总结,体现不同层次的学生对课堂教学的领悟程度。五、课堂作业列方程解决实际问题,完成练习一4、5两题。设计意图:及时反馈学生学习情况,为后续教学研究收集宝贵的教学信息。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。