提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小学教师新学期个人工作计划汇编4篇

  • 人教版高中政治必修4哲学史上的伟大变革精品教案

    人教版高中政治必修4哲学史上的伟大变革精品教案

    一、教材分析《哲学史上的伟大变革》是人教版高中政治必修四第3课第2框的教学内容。二、教学目标1.知识目标:马克思主义哲学产生的阶级基础、自然科学基础和理论来源马克思主义哲学的基本特征马克思主义中国化的重大理论成果2.能力目标:通过对马克思主义哲学的产生和基本特征的学习,培养学生鉴别理论是非的能力,进而运用马克思主义哲学的基本观点分析和解决生活实践中的问题。3.情感、态度和价值观目标:实践的观点是马克思主义哲学的首要和基本的观点,培养学生在实践中分析问题和解决问题的能力,进而培养学生在实践活动中的科学探索精神和革命批判精神。三、教学重点难点重点:马克思主义哲学的基本特征;马克思主义中国化的重大理论成果

  • 人教版新课标高中物理必修1用打点计时器测速度教案3篇

    人教版新课标高中物理必修1用打点计时器测速度教案3篇

    实验目标:1、知道打点计时器的构造和原理,学会使用打点计时器,能根据打出的纸带计算打几个点所用的时间,会计算纸带的平均速度,能根据纸带粗略测量纸带的瞬时速度,认识v-t图象,并能根据v-t图象判断物体的运动情况。2、通过速度测量过程的体验,领悟两个方法:一是用图象处理物理数据的方法;二是极限法或说无限趋近法,加强一个认识,实验是检验理论的标准。实验器材:电源(220v电源或学生电源),打点计时器,纸带,刻度尺(最好是塑料透明的),导线实验准备:1、仔细观察电磁打点计时器和电火花计时器,对照课本,比较它们的异同。2、两类打点计时器的打点时间间隔是多少?3、分析纸带时,如何计算纸带的平均速度。4、严格地说,瞬时速度我们引进测量出来的,你知道用什么方法求出的速度可以代替某点的瞬时速度吗?

  • 人教版新课标高中物理必修1用打点计时器测速度教案3篇

    人教版新课标高中物理必修1用打点计时器测速度教案3篇

    实验目标:1、知道打点计时器的构造和原理,学会使用打点计时器,能根据打出的纸带计算打几个点所用的时间,会计算纸带的平均速度,能根据纸带粗略测量纸带的瞬时速度,认识v-t图象,并能根据v-t图象判断物体的运动情况。2、通过速度测量过程的体验,领悟两个方法:一是用图象处理物理数据的方法;二是极限法或说无限趋近法,加强一个认识,实验是检验理论的标准。实验器材:电源(220v电源或学生电源),打点计时器,纸带,刻度尺(最好是塑料透明的),导线实验准备:1、仔细观察电磁打点计时器和电火花计时器,对照课本,比较它们的异同。2、两类打点计时器的打点时间间隔是多少?3、分析纸带时,如何计算纸带的平均速度。4、严格地说,瞬时速度我们引进测量出来的,你知道用什么方法求出的速度可以代替某点的瞬时速度吗?5、从器材上读取的数据是原始数据,原始数据是宝贵的实验资料,要严肃对待,要整齐的记录,妥善保存。

  • 科学教案:小熊盖新房(省力的杠杆)

    科学教案:小熊盖新房(省力的杠杆)

    二、活动目标通过动手操作,使幼儿初步感知杠杆省力的原理,激发幼儿探究的兴趣,培养幼儿分析问题和解决问题的能力。三、适用对象5~6岁幼儿。四、活动所需资源动物头饰、木棒、积木、重物、记录卡、水彩笔、浆糊、抹布、用力标志(大小不等的圆片)。五、活动过程导语:小熊要盖新房子,它买了许多材料,有些材料很重,它搬不动,我们去帮助它吧!说一说,用什么办法来运材料。

  • 中班数学:小动物搬新房课件教案

    中班数学:小动物搬新房课件教案

    目标:1.在理解5以内序数的基础上,根据门牌号码找到相应的房间。2.在活动中体验帮助小动物搬新房的快乐  流程: 情景导入——巩固经验——幼儿讨论——幼儿尝试操作——教师讲评——体验帮助小动物的快乐  重点指导: 理解门牌号码的实际意义  准备:  知识准备:1、  幼儿分别对横的、纵的两方面的序数已有了解。2、  有少数幼儿在区域游戏中玩过此类游戏,有一定的经验积累。  材料准备:1、  教师示范用不同的房子(有五间房子的平房一座,高五层、每层只有一个房间的高楼一座,高三层、每层有两间房子的高楼一座);小猴、小羊、小鸡、小猪、小兔的图片各一张。2、  幼儿操作用楼房每人一份(根据不同层次的幼儿提供不同层次的材料:分别为每层有两个房间的二层、三层、四层、五层、六层的楼房及每层有三个房间的三层、四层的楼房若干,能力不同则提供给不同的材料。这样,在横的、总的两方面都拉开了距离,满足了不同 幼儿的发展,使不同幼儿在体验成功快乐的基础上经验都得到一定的提升);身上写有门牌号码的小动物若干。3、  皱纸做的用于庆祝的彩带;录有《喜洋洋》音乐的磁带。

  • 大班数学新建小区课件教案

    大班数学新建小区课件教案

    学习活动:新建小区一、活动目标: 1、根据不同的画面进行讲述,并列出相应的算式,从而感知加减法算式表达的数量关系。 2、培养幼儿积极的思维能力,发展思维的灵活性。3、积极探索数学活动,乐于讲述探索过程。二、活动准备:1、教具:七座房子、三幅画、数字1-6、符号 、-、=。2、人手三幅图片,笔、鞭炮6串、自制金牌、银牌若干。

  • 人音版小学音乐一年级下理发师说课稿

    人音版小学音乐一年级下理发师说课稿

    第一个部分:让同学们用简单的律动随着音乐跳出三个主题所表达的情绪。让同学们用肢体的律动感受这三种不同的情绪。 第二个部分:通过简单的律动,比较这三个主题情绪的变化和音乐的陈述给律动的感觉带来的不同之处。(五)拓展(想一想):此环节的设立是为了发散学生的思维,能够让学生通过对本作品的欣赏,从侧面了解音乐学科以外的知识,同时,以本曲为音乐背景,也没有脱离本节课的教学内容。(六)小结本课的主旨是“抓住时间”,因此在本课结束时,用一首《明日歌》来收尾,让学生懂得时间宝贵的道理,同时也起到了学科整合的作用。最后让学生听着乐曲走出教室,结束本节课的学习。五、总结在本教学中,我力求让学生以“听和动”为主,开展不同形式引导学生倾听音乐、表现音乐,引导学生从乐曲的旋律、节奏、音色、速度等方面,认知形形色色的钟表形象, 体会人们当时喜悦的心情。

  • 人教版高中历史必修3从“师夷长技”到维新变法说课稿2篇

    人教版高中历史必修3从“师夷长技”到维新变法说课稿2篇

    (一)、教材地位:我说课的内容是人教版高二历史(必修3)第五单元《从“师夷长技”到维新变法》。本课主要讲述了鸦片战争后中国思想界发生的巨大变化,所讲述内容对中国近百年的历史走向,对近代中国政治发展所产生的影响是至关重要的,所以这节课在教材中具有重要的地位和作用,同时也是本册书中的重要章节。(二)、课标要求:《高中历史新课程标准》对这一节内容作了这样的要求:了解鸦片战争以后中国人学习西方 寻求变革的思想历程,理解维新变法思想在近代中国社会发展中所起的作用。(三)、教学目标:根据课标要求、教材内容和学生的具体情况,确立以下教学目标:1、知识与能力:(1)识记:林则徐被称为“开演看世界的第一人”;魏源的“师夷长技以制夷”思想;洋务派“师夷长技以自强”思想;早期维新思想和90年代维新思想;

  • 大学生暑期三下乡的调研报告三篇

    大学生暑期三下乡的调研报告三篇

    能够担任我们学院的重点团队之一的主要负责人,这让我感到十分任重而道远,毕竟是第一次带领团队参加三下乡实践活动。团队组织得是否得当,工作分配是否合理,还有住食问题、安全问题等都是我们队长要考虑的。因为怕自己无法胜任这个职位,自信心起初当然会受到一定的打击。为了能够让这次的活动做到尽善尽美,在出发前,我对所有的队员做了思想工作必须特别能吃苦,特别能贡献,在服务大众的同时,培养自身的社会实践能力。并且让各个队员做好准备工作和工作展望。准备工作如期进行,大家都有了大概的工作理念。自然地,充分的工作准备,不仅给予了我极大的自信心,而且还使工作顺利地展开。

  • 在迎接省委组织部人才工作调研汇报会上的发言

    在迎接省委组织部人才工作调研汇报会上的发言

    一、强化引才育才、鼓励引导人才向基层一线流动(一)具体做法一是刚性引才方面:从X年起,我市就启动了刚性引才项目,就是每年从全市自然减员的事业编制中拿出X个用于刚性引进高层次紧缺人才,五年来,通过面试的形式,为全市引进硕士或副高以上人才X人,其中市级层面引进X人,县乡X人。其中有X人入选省“千人计划”,X人入选省“特支计划”。我们还同步实施了“企业白领计划”,五年来,通过笔试的方式,共选派X名优秀高校毕业生到民营企业工作,其中为县级民营企业输送优秀高校毕业生X人。二是柔性引才方面:我们通过搭建平台,以不求所有,但求所用,不求所在、但求所为的柔性引才思路,充分发挥柔性引才针对性强,层次高,受益面广的特点,依托已建成的X个院士专家工作站,X个博士后工作站,X个市专家工作站,X个流动专家工作站,共柔性引才X名。其中:在县级层面上建立院士工作站X个、市专家工作站X个,流动专家工作站X个,柔性引才X人。通过这些措施,让我市群众在家门口享受到了国内一流的医疗、教育和农技服务。

  • 在全省专精特新“小巨人”企业培育工作阶段总结会议上的讲话

    在全省专精特新“小巨人”企业培育工作阶段总结会议上的讲话

    在全省“专精特新”中小企业普及推广两化融合管理体系升级版标准,系统推进数字化转型,加快落地实施形成数字化管理的典型案例。在细分行业打造一批智能化生产、网络化协同、个性化定制、服务化延伸等业态模式创新典型的工业互联网标杆企业,引导“专精特新”中小企业依托工业互联网平台,综合运用数据采集与集成应用等技术,实现生产制造以及产品、工厂资产和商业的全流程优化。聚焦“专精特新”中小企业关键需求,推动建设一批智能制造服务平台,为“专精特新”中小企业提供专业化服务,加快信息技术集成应用,增强装备的可接入水平和装备间数据交互能力,支持“专精特新”中小企业建设智能车间。支持面向行业的工业互联网平台建设,大力推广网络协同制造、共享制造等新模式,支持“专精特新”中小企业开展智能制造能力成熟度评估,引导企业因地制宜开展智能制造,不断提升精益生产、精细管理和智能决策水平。

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 人教版高中数学选修3组合与组合数教学设计

    人教版高中数学选修3组合与组合数教学设计

    解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).

  • 北师大初中七年级数学下册用尺规作角教案

    北师大初中七年级数学下册用尺规作角教案

    解析:①以O为圆心,任意长为半径作弧交OA于D,交OB于C;②以O′为圆心,以同样长(OC长)为半径作弧,交O′B′于C′;③以C′为圆心,CD长为半径作弧交前弧于D′;④过D′作射线O′A′,∠A′O′B′为所求.解:如下图所示.【类型三】 利用尺规作角的和或差已知∠AOB,用尺规作图法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一个角等于∠AOB,再以这个角的一边为边在其外部作一个角等于∠AOB,那么图中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下图).三、板书设计1.尺规作图2.用尺规作角本节课学习了有关尺规作图的相关知识,课堂教学内容以学生动手操作为主,在学生动手操作的过程中要鼓励学生大胆动手,培养学生的动手能力和书面语言表达能力

  • 北师大初中八年级数学下册旋转作图教案

    北师大初中八年级数学下册旋转作图教案

    解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.

上一页123...767778798081828384858687下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。