提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编版语文九年级上册《你是人间的四月天》说课稿

  • 人教版高中数学选修3成对数据的相关关系教学设计

    人教版高中数学选修3成对数据的相关关系教学设计

    由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.

  • 人教版高中数学选择性必修二导数的概念及其几何意义教学设计

    人教版高中数学选择性必修二导数的概念及其几何意义教学设计

    新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即

  • 人教版高中数学选择性必修二等比数列的概念 (2) 教学设计

    人教版高中数学选择性必修二等比数列的概念 (2) 教学设计

    二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (1) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (1) 教学设计

    新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.

  • 人教版高中数学选择性必修二等差数列的概念(1)教学设计

    人教版高中数学选择性必修二等差数列的概念(1)教学设计

    我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③

  • 人教版高中数学选择性必修二等差数列的概念(2)教学设计

    人教版高中数学选择性必修二等差数列的概念(2)教学设计

    二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9

  • 人教版高中数学选择性必修二等比数列的前n项和公式   (2) 教学设计

    人教版高中数学选择性必修二等比数列的前n项和公式 (2) 教学设计

    二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和

  • 人教版高中数学选择性必修二数列的概念(1)教学设计

    人教版高中数学选择性必修二数列的概念(1)教学设计

    情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中数学选修3离散型随机变量的方差教学设计

    人教版高中数学选修3离散型随机变量的方差教学设计

    3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.

  • 人教版高中数学选修3离散型随机变量的均值教学设计

    人教版高中数学选修3离散型随机变量的均值教学设计

    对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    人教版高中数学选择性必修二等差数列的前n项和公式(2)教学设计

    课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。

  • 人教版高中数学选择性必修二函数的单调性(1)  教学设计

    人教版高中数学选择性必修二函数的单调性(1) 教学设计

    1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示

  • 人教版高中数学选修3二项式系数的性质教学设计

    人教版高中数学选修3二项式系数的性质教学设计

    1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • XX学年第一学期第15周国旗下讲话稿:做“学法、知法、守法”的好少年

    XX学年第一学期第15周国旗下讲话稿:做“学法、知法、守法”的好少年

    尊敬的老师,亲爱的同学们:大家早上好!我是一(3)班的孙xx。同学们,我们是祖国的希望和未来,正值花季。但年龄特点决定了我们的幼稚、不成熟,可能会做出一些不该做的事情,甚至因法律意识的淡薄而导致一些违法犯罪现象的发生。有些现象,比如:有的同学在我们学校上学的时候,不遵守纪律,不听老师的教育,爱小偷小摸,小到拿别人一支铅笔、一块橡皮,大到偷钱、抢钱等等,还有的同学爱打架,总之在他们小小的年纪,就已经有了许多劣迹。当他们走出我们的校园,或早或晚,几乎都走上了犯罪的道路,受到了法律的制裁。他们最后走上这一步,并不是一步走成的,其实他们就是在我们这个阶段、我们这个年龄开始一步一步不听教育,渐渐变坏的。因此,这的确应该引起我们的高度重视。随着时代的发展,一些不健康的东西也在渐渐地影响到了我们。我们要变坏真是太容易了,比如网吧,对我们的成长就极为不利,我们也知道有多少人因此而荒废学业甚至犯罪啊。所以,我们完全有必要一起来学习有关的法律知识,来尽量减少直至完全避免违法犯罪现象的发生。

  • 法制宣传日国旗下讲话稿:做一个遵纪守法的实中人

    法制宣传日国旗下讲话稿:做一个遵纪守法的实中人

    同学们、老师们,大家早上好!世上本没有路,走的人多了,也便成了路;世上本没有交通规则,路上的车辆多了,也便出台了交通规则。从人的本性上来说,没有人喜欢被规则约束,人们更多的是对自由的渴望,对无拘无束的生活的向往;但是,没有规则约束的自由不是真正的自由,而是灾难。黄河因为有了堤岸的约束,才能展现它一泻千里、波澜壮阔的奔腾气势,成为哺育中华民族的母亲河,如果没有堤岸或堤岸决口,则会带来致命的洪灾。现代交通,有了合理的交通规则,且能严格遵守的话,才有高速行驶的畅快,才能给人类带来巨大的便利,反之,将引发巨大的灾难。所以,堤岸是河流的保护神,交通规则是驾驶员的保护神,校纪校规是学生的保护神,法律法规是我们所有社会人的共同的保护神。

  • 第六周国旗下讲话稿:敬畏规则,做一名守规则的好少年

    第六周国旗下讲话稿:敬畏规则,做一名守规则的好少年

    有这么一则故事:一个哈佛大学学生,在学校图书馆偷拿了一本珍贵的资料书。不久,一场大火烧毁了图书馆,他偷的书就成了唯一珍品。要不要把书送回去?他犹豫了,不送受到心灵的谴责,送了则有可能被学校开除。经过斗争,他还是决定把书交送给校长。校长先表扬了他敢于认错的精神,然后宣布开除这名学生。很多人觉得校长不讲人情,可是校长的治校理念非常清晰:规则大于人情,让规则看守哈佛更可靠!俗话说:“没有规矩,不成方圆。”那么什么是规则呢?规则就是规定出来让大家遵守的做事规程和行动准则。他告诉我们什么事情可以做,什么事情不可以做。那么,我们在校园中有些什么规则呢?在校园内,我们有一些言行规则:爱护公物,见到老师和同学要主动问好;见到校园路上的垃圾要随手捡起来;不欺负小同学,不和同学说脏话。在课堂上,用心听课,积极思考,举手发言,认真完成作业,都是我们应该遵循的学习规则。

  • XX年高考倒计时国旗下讲话稿:胸怀梦想,做更好的自己

    XX年高考倒计时国旗下讲话稿:胸怀梦想,做更好的自己

    亲爱的老师们、同学们:上午好!我是来自高三(5)班的周xx,今天我发言的主题是“胸怀梦想,做更好的自己”。今天是XX年的3月27日,距离高考还有72天,三年前我怀揣着梦想与希望走进金沙,一千多个日夜,我时刻记住自己的理想,做更好的自己。汪国真曾说过:“凡是到达了的地方,都是属于昨天,哪怕那山再青,那水再秀,那风再温柔。太深的流连便成了一种羁绊,绊住的不仅是双脚,还有未来。”诗人看似谈的是进退间的从容,我却认为,它实际上囊括了对生命的解读:无论经历几多浮沉,万不要让繁花落寞埋没了你,你得清楚心里究竟想要什么。心中有光,才能一路坚定不移,执着向前。我们金沙人即使如此,只有胸怀梦想,才能奔向远方,做更好的自己。在这里,我想问问所有一起奋战的高三同学们:“你们还记得初进高中时的梦想吗?”高三的一模考试刚结束不久,和其它的考试一样,在成绩公布的那一刻,自然又是几家欢喜几家愁。许多同学在收到成绩单是,似是一下子跌入了低谷,未来只剩下迷茫和不确定性。毕竟一模考试的重要性对每一个高三学生来说都是不言而喻的。到了这个时候,每个人的能力基本上都已经到了一个极限,想要经一部是跟艰难的。然而想倒退一步也许只需要片刻的松懈。

  • “国际六一儿童节”国旗下讲话稿:让我们的童年像花儿一样

    “国际六一儿童节”国旗下讲话稿:让我们的童年像花儿一样

    今天也是我的儿子过的最后一个六一儿童节,暑假以后他就要读七年级了,昨天晚上,儿子和我进行了一番交流:“爸爸,明天你送什么礼物给我啊?”现在生活质量提高了,我们衣食无忧,送给儿子什么礼物呢?我一直在考量这个问题。我认为应该送给他三件礼物。第一件礼物:要有一颗有责任感能担当的心。我们的社会稳定,人民生活安康,这是先辈们用鲜血换来的,没有先辈们的血染沙场何来今日的璀璨辉煌?我们红领巾是先辈们用鲜血染红的,佩戴红领巾是一种信仰,是对先辈们无限地崇敬,是对美好生活的无限追求。我们应该牢记先辈的嘱托,认真学习,刻苦钻研,开拓创新,勇于担当,从我做起,为伟大的“中国梦”描摹上精彩的一笔,树立为实现中国梦而读书的理想。

  • 大班科学教案:物体间的空隙

    大班科学教案:物体间的空隙

    三、适用对象:5~6岁幼儿。四、活动所需资源;每组一个托盘,盘内有一个空广口玻璃瓶、一碗石头(10块左右)、2/3碗小石子、l/3碗沙子、1/3碗水(矿泉水瓶也可)、一把小勺、一根筷子、画有玻璃瓶轮廓的记录纸和笔、指偶小兔。五、活动过程:让幼儿观察桌上摆放的实验用品:石头、小右子、沙子和水、一把小勺、一根筷子、画有玻璃瓶轮廓的纸和笔。说一说,石头、小石子、沙子和水有什么不同。

  • 幼儿园大班教案:动物之间的联络

    幼儿园大班教案:动物之间的联络

    【重难点】  重点:了解动物主要是通过声音、行动和气味三种方式传递信息。  难点:了解动物运用气味的联络方式。【活动准备】  知识:课前请幼儿搜集有关动物间联络方式的知识。  物质:各种动物的图片、展板、头饰、课件等。【活动过程】(一)导入:激发兴趣,引出主题。  1.教师口技表演(小鸟叫声),激发兴趣。  过渡语:小鸟虽然不会说话,但它可以用叫声来联络伙伴,那你们想知道其他动物是怎么联络伙伴的吗?今天我就给你们带来了动物交流联络时的录像,让我们一起看一看。  2.观看两种动物的联络方式,引出主题。  提问:蜘蛛遇到危险时,是怎样联络伙伴的? 蜜蜂是怎样跳舞的?我们一起来学学。(摇摆舞,八字舞) 你知道其它动物是怎样联络的?  过渡语:动物之间的联络方式有很多很多,下面就请小朋友和你的小伙伴边看着大图片边交流讨论:其它动物都是怎样联络的。孩子们,请到这边来!(二)展开:了解动物的三种主要联络方式。  1.幼儿自由观看讨论动物图片,发现学习。  2.引导幼儿了解动物主要的三种联络方式。  (1)幼儿交流自己知道的动物的联络方式。  (2)幼儿在充分说的基础上,教师进行动物联络方式的归类。

上一页123...277278279280281282283284285286287288下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。