各位老师、同学们:早上好。今天我国旗下讲话的题目是:做一名有理想的中学生。同学们,当你们第一天走进文华中学的校门时,你肩上背的是你父母的期望,摆在你面前的是机遇和挑战。如何把握机遇,迎接挑战?这需要你做一名有理想的中学生。理想是人生奋斗的目标,一个人有了理想,就可以像雄鹰主宰蓝天,自由翱翔那样对人生充满自信和奋斗的勇气。理想,是我们前进的方向,是我们前进的动力!古人是很重视理想的,他们把理想称为“志”。即使生活到了穷困潦倒的地步,也不能“穷志”。理想就像一台“发动机”,给予人们奋发进取的极大动力,造就了古今中外名人。如果没有理想,勾践便不会卧薪尝胆,最终复国;如果没有理想,李时珍便不会亲尝百草,著成《本草纲目》;如果没有理想,居里夫人就不会献身科学,成为科学巨人;如果没有理想,爱迪生就不会成为闻名世界的伟大发明家。
如何合理利用时间尊敬的老师、亲爱的同学们:早上好!今天我与大家交流的话题是《如何合理利用时间》。时间是世界上最紧缺的资源,也惟有时间,不可存储,不可透支,因此,曾有哲人说过:“时间就是生命”。近一段时间来,我们七年级和高一同学,迎来了学习生活的新挑战,面对新生活,同学们都表现出了极大的热情,然而有些小问题也随之而来,很多同学不会合理利用时间,学习习惯不好,该休息的时候不休息,自习不知道该干什么了,因此如何利用好每天的时间是我们面临的第一个大挑战。在此就同学们如何合理利用时间提出几点建议:1.如何利用早晨的黄金时间?早晨是一天中最宝贵的时间,也难怪有“一年之际在于春,一天之际在于晨”之说,但有些同学却没有很好地利用一天中最美好的早晨时间,不是留恋热被窝睡懒觉,就是使用不当,或抓得不紧,造成早晨黄金时间的浪费。在早晨起床之前,人的大脑处于休息阶段,由于背记没有先前的干扰,容易记住,早晨起来背记效果最好
播种理想,努力学习,追求卓越老师们、同学们:大家好!今天我发言你的题目是《播种理想,努力学习,追求卓越》。XX年高考的钟声已经结束,广大的高三学长们在一中这片沃土上播种着自己的理想,用辛勤的汗水和顽强的毅力书写着他们的成长史,我们期待着他们捷报传来。XX年高考的结束,也意味着高二的同学已经踏入了高三生涯,明天的六月你们也将踏上征程;XX年高考的结束,同样意味着高一的同学们也即将结束高一的学习,进入小高考的倒计时。在接下的日子里,我们的同学该如何更好的投身当前的学习和生活呢,哪些素养和品质能更好地帮助大家以及应对和参与瞬息万变的社会发展呢?只有“播种理想,努力学习,追求卓越”。一、我们要树立远大理想,播种人生希望。理想,是力量的源泉;理想,是心中的绿洲;理想是指路的明灯,引领人们走向成功。“面壁十年图破壁,难酬蹈海亦英雄。”这是1917年9月,敬爱的周总理决定东渡日本求学时写下的诗句。字里行间洋溢着总理的爱国热情。正是周总理年轻时就能树立如此豪壮的理想,才把苦难的中国人民从水深火热之中拯救出来。
B重点与难点重点:伽利略对物理学发展的重大贡献;经典力学的建立;相对论的提出;量子论的诞生。难点:物理学各阶段发展的原因;对科学发展创新性的理解。D教学过程【导入新课】1632年,伽利略撰写的《关于托勒密和哥白尼两大世界体系的对话》科学巨著出版后,立刻引起教会的恐慌,把伽利略投入监狱。教皇乌尔班八世的御用工具——宗教裁判所在1633年6月21日宣布对伽利略的判决:“我们判决你在宗教法庭监狱内服刑,刑期由我们掌握,为了有益于补赎,命令你在今后3年内,每周背诵7篇赎罪诗篇……”这一纸胡言,竟使伽利略蒙冤300多年,致死都没有撤销判决,甚至死后还被禁止举行殡礼,不准葬入圣太克罗斯墓地。那么,是什么原因导致宗教裁判所对伽利略作了如此判决?我们应如何看待伽利略在科学领域的贡献?
陆王心学与程朱理学相比有何异同?生 不同点:在理的内涵上不同,程朱理学认为“理”是贯通于宇宙、人伦的客观存在,是一种普遍的规律准则;陆王心学认为心即理,是“良知”,认为人心便是世界万物的本原。方法上也有不同:前者向外追究,“格物致知”;后者向内探求,“发明本心”以求理,克服私欲、回复良知。生 相同点:都提出了一个宇宙、社会、人生遵循的“理”。师 对。程朱理学是客观唯心主义,阳明心学是主观唯心主义。这两者的分歧是理学范围内的分歧,其基本思想是一致的。师 宋明理学与汉唐以前的儒学比较,最大的特点在于批判地吸收了佛教哲学的思辨结构和道教的宇宙生成论,将儒家的伦理学说概括升华为哲学基本问题。其实质是把佛、道“养性”“修身”引向儒家的“齐家”“治国”“平天下”,对儒家的纲常道德给予哲学论证,使之神圣化、绝对化、普遍化,以便深入人心,做到人人遵而行之。
二、程朱理学:1、宋代“理学”的产生:(1)含义:所谓“理学”,就是用“理学”一词来指明当时两宋时期所呈现出来的儒学。广义的理学,泛指以讨论天道问题为中心的整个哲学思潮,包括各种不同的学派;狭义的理学,专指程颢、程颐、朱熹为代表的,以“理”为最高范畴的学说,称为“程朱理学”。理学是北宋政治、社会、经济发展的理论表现,是中国古代哲学长期发展的结果,是批判佛、道学说的产物。他们把“理”或“天理”视作哲学的最高范畴,认为理无所不在,不生不灭,不仅是世界的本原,也是社会生活的最高准则。在穷理方法上,程颢“主静”,强调“正心诚意”;程颐“主敬”,强调“格物致知”。在人性论上,二程主张“去人欲,存天理”,并深入阐释这一观点使之更加系统化。二程学说的出现,标志着宋代“理学”思想体系的正式形成。【合作探究】宋代“理学”兴起的社会条件:
【启发想象 】能否将刚才讲的内容用一个游泳动作形容一下?这好像蛙泳动作。我们大家一起做:熔岩冒出(双手合十向上)→推向两边(双手向两侧分开)→遇陆俯冲(双手往下)→重熔再生(双手相向合并向上)。【小结板书】二、海底扩张学说前面我们学习了两个假说,整理一下已知条件:事实证明大陆是在漂移的,如欧洲与美洲的距离在扩张,但是漂移的动力不足;海底是不断扩张的,有生长与消亡。能否在前人研究的基础上,提出更准确更合理的假设呢?一个新的理论诞生了,它是目前最盛行、最活跃的全球构造理论【板书】三、板块构造学说1.板块概念学生读书。【启发提问】板块“漂移”与大陆“漂移”的位置有何不同?学生回答。板块漂移是指岩石圈漂在软流层上,大陆漂移发生在地壳两层之间。【提问】板块是如何划分的?读图用半分钟记下六大板块的位置和名称(提示:按大洲和大洋名称记忆)。
第一个部分:让同学们用简单的律动随着音乐跳出三个主题所表达的情绪。让同学们用肢体的律动感受这三种不同的情绪。 第二个部分:通过简单的律动,比较这三个主题情绪的变化和音乐的陈述给律动的感觉带来的不同之处。(五)拓展(想一想):此环节的设立是为了发散学生的思维,能够让学生通过对本作品的欣赏,从侧面了解音乐学科以外的知识,同时,以本曲为音乐背景,也没有脱离本节课的教学内容。(六)小结本课的主旨是“抓住时间”,因此在本课结束时,用一首《明日歌》来收尾,让学生懂得时间宝贵的道理,同时也起到了学科整合的作用。最后让学生听着乐曲走出教室,结束本节课的学习。五、总结在本教学中,我力求让学生以“听和动”为主,开展不同形式引导学生倾听音乐、表现音乐,引导学生从乐曲的旋律、节奏、音色、速度等方面,认知形形色色的钟表形象, 体会人们当时喜悦的心情。
1、 教材的地位和作用本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.2、 教学目标①理解有理数产生的必然性、合理性及有理数的分类;②能辨别正、负数,感受规定正、负的相对性;③体验中国古代在数的发展方面的贡献.3、 教学重点和难点教学重点:理解正数和负数的概念和有理数概念.教学难点:对负数概念的理解和有理数的分类.二、 教学分析鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。
第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明. 活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:① 探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.② 总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.
求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC中,∠C=90°.求证:∠A与∠B互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A与∠B互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.三、板书设计命题分类公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.
本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1).方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x满足x2=17,则x精确到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正数x各位上的数字的方法:(1)估计x的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x的百分位、千分位、…上的数,从而确定x的值.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
二、 说学情:二年级的学生由于他们的年龄特点,具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的逻辑推理能力。基于以上情况,本节课将以游戏的形式为主,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单的推理过程,获得一些简单的推理经验,提高学生的分析能力与合作能力。三、说教学目标:知识与技能目标:通过观察与形式多样的猜测活动,使学生经历简单的推理过程,初步获得一些推理经验。过程与方法目标:通过借助连线、列表等方式整理信息,并按一定的方法进行推理。态度与价值观目标:在简单的推理过程中,使学生感受推理在生后中的广泛应用,初步培养学生有序地、全面地思考问题的意识。培养学生初步的观察、分析、推理能力。四、说教学重点:经历简单的推理过程,初步获得一些简单的推理经验。五、说教学难点:初步培养学生有序地、全面地思考问题的能力。
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
l尺子上每相邻的两条长刻度线之间的一大格的长度都是1厘米。师:我们大家现在一起用手比划一下,1厘米多长。互相看一下,计住了吗?闭上眼睛想一想,1厘米有多长。3、认识几厘米师:我们现在知道1厘米有多长了,那3厘米又有多长呢?师:同学们还能在尺子上找到其他3厘米的长度吗?4、用厘米量师:刚才上课时,老师展示的2根线绳,到底哪一根长一点呢?现在,同学们先估计一下这两根线绳各自多长,然后在测量比较一下,好吗?师:结果是哪根线绳长一点呢?能说说你是怎么量的吗?三、知识拓展1、师:老师这里有一把尺子,可是它断了一节,没有刻度“0”,只剩下刻度3到刻度10,那么这把尺子能不能用来量物体的长度啊?同学们能不能帮老师想一想办法,好吗?2、其他测量长度的工具(课件展示)
长度测量是其它测量的基础,而且学生虽然接触过有关长度的测量,但技能还很不稳定,更是不规范。所以本内容强调教师指导作用,教师及时纠正学生的错误操作,并组织讨论错误测量引起的测量值偏差,测量结果的正误。教学定位应力求实验操作规范,观察认真细致,给学生以示范作用。5、建立一个人体尺度意义提问:如果我们手边没有刻度尺,又需要粗略地知道物体(如科学课本、课桌、教室……)的长度时,你有什么办法吗?(提问,给出了建立人体尺度的目的)(可能回答:用人体的指距、跨步距离……进行粗测)学生分组实验:利用人体的指距、跨步距离……粗测课桌的长和宽、教室的长和宽,并与用刻度尺测量的结果进行对照。以上做法相当于学生在自己身上设置了一把尺子,这把尺子与身体的其他“尺子”联系在一起,还可以做出其他许多的估计,有利于因地制宜培养学生的估测能力。