方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
小班的年龄都处于3~4岁之间,这个时期,幼儿的有意注意有了明显改善,感知觉也逐渐趋向完善,对生动、形象的事物和现象容易认识,其思维也是在直接感知和具体行动中进行的,较多依赖于生动、鲜明的形象去认识和理解事物。这个教学内容是通过对儿歌的感知和理解,让幼儿来感受诗歌中天真活泼的情趣,从而激发幼儿有朗诵儿歌的兴趣。此教材富有形象性、趣味性和启发性。在学习过程中需要有一定的语言基础和知识经验,而小班幼儿已经能说一些简单的句子,并对小动物有一定的认识,因此本内容在小班教学是符合幼儿认知特点的,所以我选了这个内容,以促进幼儿具体形象思维和创造性思维的进一步发展。1.感知小鸭、小鱼、小鸟的行走方式,乐意学习儿歌。2.学习儿歌《谁最羞》,体验小袋鼠的羞的心理。3、知道要自己走路,不要大人抱。
小学德育工作的重点是:培养学生的良好行为习惯。而劳动习惯也是小学生应该具有的习惯之一。苏霍姆林斯基在《怎样教育学生热爱劳动》一文中曾通过具体的事例引导学生热爱劳动,并用自己和同学们的行动证明了热爱劳动是人的自尊和文明的最高程度。作为老师,也就更应当注重学生劳动习惯的培养,并让学生在劳动中找到乐趣。正如苏霍姆林斯基说,真正的幸福的根源在哪里?就在于创造,在于创造性的劳动。我们教育的目标就是在一个人的面前揭示劳动的伟大,努力把每一个人培养成劳动的创造者。最近又适逢五一劳动节,这对于教育学生养成良好的劳动习惯又是一个很好的契机。【班会目的】通过班会活动,使学生懂得学会自理,学会自己的事自己做,在劳动中不怕脏、不怕累,从小养成爱劳动、自己管理自己的良好习惯。正基于此,采用儿歌、小品、讨论、比赛、三句半、才艺表演、齐唱等形式,力求有层次的,潜移默化地引发,导向,激励学生热爱劳动。
《纲要》明确指出:教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验的视野”,幼儿园数学教育不是为纯粹的教育而教育,是一种以幼儿生活为特征的教育,这就要求我们要立足幼儿的生活实际,紧密联系幼儿的生活来开展教育。像我班小朋友午睡起床,常有孩子把鞋子、袜子拿错、穿反。根据小班幼儿年龄特点,我设计了以鞋子、袜子、鞋垫为活动材料的《找朋友》数学活动,引导孩子在原有的生活经验上关注物体的形状、大小、颜色的不同,进行配对。在游戏中自然渗透数学的概念,达到“玩中学,玩中教”的目的。活动的目标对活动起着导向性作用,根据本班幼儿的年龄特点和实际情况,确立了情感、能力等方面的目标.其中有探索认知部分,也有操作部分,具体目标是:1、认识目标:(1)、初步形成“双”的概念,知道一双有两只。(2)、能按鞋子、袜子、鞋垫的外形,颜色,大小等特点进行配对。2、能力目标:发展幼儿的观察力、记忆力、创造力和想象力。3、情感目标:体验与教师、同伴游戏的快乐;初步感受改编儿歌的乐趣,从而激发幼儿的求知欲。
2、学习按给出的序数词找到它所表示的相应位置。3、发展幼儿思维的逻辑判断能力和动手操作能力。4、培养幼儿在计算活动中的兴趣。活动准备:森林小区图、楼房图、各种小动物教具若干、写有1—5序数的“钥匙”一套、幼儿每人一套空白卡片、一支黑色笔、一张照片卡供游戏使用。活动过程:一、学习用第几座的形式来表示五座房子的序数。1、引出课题:告诉小朋友一个好消息!森林里的小动物们要搬新房子啦!它们还请小朋友们去帮忙分房子呢。看!森林小区有这么多漂亮颜色的新房子,它们都是什么颜色的呀?2、别着急,我们从左到右,一座一座的说。(绿的、红的、蓝的、黄的、还有紫色的。)
2、运用图形连接创造简单的图像,初步体会图形组合的意义。准备1、形纸(供师生共同作画的纸较幼儿画纸大一倍)2、勾线笔、蜡笔(每人一、二支),方形打印纸。过程一、一起画图形。1、一起画大园和小园——始末线条碰一碰封口。2、一起画大方和小方——始末封口画方3、圆形拉一拉,变长了,名字叫椭圆——画一画大小不同的椭圆,尝试和园或方碰一碰连起来。4、方形拉一拉,变长了,名字叫长方——画一画和园、方连起来碰一碰的大小不同长方。二、图形朋友碰碰碰1、找一找图形朋友碰一碰以后像什么。(例如:人、动物、植物、交通工具等。)2、确定某个物体,添加图形碰一碰,表现局部特征。3、在轮廓线内涂色。碰出一个好朋友。
2、通过动手操作,发展幼儿空间想象能力和创造能力。3、培养幼儿对数学活动的兴趣。活动准备:1、知识按的准备:幼儿已经认识几中图形。2、物质资料准备:奇妙箱,幼儿操作用的六种几何图形若干;各种图形卡片人手一份。活动流程总观:奇妙箱里找图形说特征——拼画——数数、分类——延伸:让幼儿自己寻找其他图形活动过程:(一)游戏:“奇妙箱”里找图形娃娃师:“今天,老师带来了一只奇妙的箱子。”(出示奇妙箱),“你们想不想知道里面藏了什么秘密啊?”1、老师念儿歌:奇妙口袋东西多,让我先来摸一摸,摸出来看是什么?拿出长方形,问:“这是什么啊?为什么说她是长方形的啊?”问:“日常生活中,我们见过哪些东西是长方形的?”(引导幼儿讨论)2、再念儿歌:奇妙口袋东西多,请某某小朋友来摸一摸。当幼儿摸出图形后,要求说出图形名称和特征,并讲出生活中还有哪些这样的物品?……游戏反复进行。
活动目标: 1、让幼儿在猜猜、想想、看看、数数的游戏中复习5以内的数数,序数和排序。 2、发展幼儿的观察力,提高幼儿对计算活动的兴趣。 3、趣味识字:橘子、葡萄、梨子、苹果、西瓜、桃子、草莓香蕉等。活动准备: 1、贴绒水果娃娃5个(背后贴有水果),颜色不同的卡车5辆,二进制游戏图片一张,各种水果拼图20张。 2、每组1----5数字卡片若干。识字卡:橘子、葡萄、梨子、苹果、西瓜、桃子、草莓、香蕉等。 活动过程: 一、开始部分 出示水果娃娃,引起兴趣。“今天,老师请来了水果娃娃,我们来看看都有些什么水果?”(橘子、葡萄、梨子、苹果、西瓜、桃子、草莓、香蕉)我们来数数,一共有几种水果娃娃呢? 二、基本部分 1、猜数和排序 (1)猜数 水果娃娃要和小朋友玩个猜数的游戏,每个水果娃娃背后都藏有一个数字,你们想知道是数字几吗? a、梨子娃娃说;“我比2多1”,谁知道这个数字是几呢? B、葡萄娃娃说“我比5少1” C、橘子娃娃说“我是1-----5数字中最小的那个数,是数字几呢? D、你们看看1----5数字中还剩下哪两个数呢?那西瓜娃娃和苹果娃娃谁是2谁是5呢?西瓜娃娃说:“我的数字比苹果娃娃大,谁能告诉大家是几?那苹果娃娃是数 字几? (2)巩固 现在老师看看你们记住了没有,加以验证。师指认每个水果娃娃,让幼儿说出背后的数字。 (3)猜猜少了哪个数? 现在老师任意拿走一样水果,问少了几,是什么水果,重复指认水果和数字。
二、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。三、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。活动准备:1、学会了各种图形的特征。2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。3、圆形、三角形、长方形、正方形的图形标记,音乐。活动过程:一、情景导入“捡石头”,激发幼儿活动兴趣。1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室)2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”3、引导幼儿观察、操作,鼓励幼儿边操作边交流。4、请小朋友大胆介绍自己喜欢的石头(颜色、形状)。5、游戏:按标记举“石头”。
2、认识圆形、正方形、三角形图形标记,并学习按照图形标记制作相应的形状。 3、能注意操作过程中的书面整洁,乐意边操作边讲述。 活动准备: 1、圆形、三角形、正方形饼干(均未拆封)若干。 2、三只毛绒小动物,每个小动物胸口有一个形状标记。 3、圆形、三角形、正方形大图片。 4、幼儿用书(P10—11)人手一册 5、圆形、三角形、正方形的印章(或小图片),颜料等若干。 活动过程: 一、观察饼干的形状,了解形状的主要特征。1、出示饼干,请幼儿说说:这是什么?它有哪些形状?你喜欢吃什么形状的饼干? 2、教师(出示圆形、三角形、正方形):圆形(三角形、正方形)是什么样子的? 3、教师折叠图形,引导幼儿直观感受图形的特征呢感,使幼儿知道:圆形是圆圆的,没有尖尖的角;正方形有四个一样大的角,一样长的边;三角形有三个角,三条边。
二、活动准备: 幼儿人手一张图画纸,图纸中间是一个小动物的妈妈(教师事先画好)幼儿在动物妈妈的周围画上动物宝宝,数量以6—10不等。如小动物有小熊、孔雀、大象、等等都是幼儿熟悉的。三、活动过程: 1.天气越来越暖和了,我们小朋友去上海动物园春游,小动物看到有这么多小朋友去看它们,非常高兴,它们听说嘉定有儿童公园,它们也想来玩玩。 2.动物妈妈带了许多宝宝,我们先来帮助动物妈妈数数有几个宝宝。 (1)、幼儿人手一份图画纸,分别数数有几只动物宝宝。 重点观察:幼儿寻找被数物体的起始点和终止点并能正确进行数数。