五是坚持联动融合、多元共治,社会治理更接地气。持续提升社会治理科学化水平,有效发挥现代化指挥中心“最强大脑”作用,对接数字化城管、安监及12345政务热线实现共治共享。开展安全执法检查256家次,发现隐患问题559个,开出限期整改单103份,行政处罚3家单位。多元推进网格化服务管理,园区51个综合网格优化调整到位,272个微网格落地落实见效,网格驿站、微网格工作站建设全覆盖推进,社区专职网格员、微网格联络员全覆盖配备。持续推进代表“家站点”建设,第34选区代表联络工作站申报全国人大常委会基层立法联系点。扎实推进信访突出问题攻坚化解,确保“两会”、国庆等重点时段平安稳定。今年以来,园区共接待来访132批151人次,其中领导干部定点接访、约访98批121人次,走访下访28批32人次,会商会办21批31人次,成功化解疑难复杂信访积案11件。
三是严控舆情转播。针对目前舆情传播情况,*要采取多种措施控制传播范围,积极主动加强与属地同类型、有影响力的媒体平台联系,防止其进一步跟进导致事态进一步发酵。下面进行第五项议程,请*作工作安排。一是加强组织领导。*作为职能落实牵头部门,要进一步加强与*沟通联系,及时了解反馈处置情况,督导做好有关工作落实。涉及相关业务部门要密切配合做好具体问题的办理、协调、改进及回复等工作,齐心协力做好本次舆情应对处置工作。*是开展本次舆情处置的第一责任端口,要进一步提高思想认识,成立专门处理工作领导小组,明确责任分工,提升工作合力,对内及时做好有关信息传递和问题、舆情控制等工作沟通协作,全力以赴做好应对处置工作。二是强化责任落实。*要严格落实舆情突发事件处置办法工作要求,以本次事件处置为契机,加强经验总结,推动完善有关工作机制,夯实工作责任,定期做好舆情分析和问题研判,及时解答热点话题的疑问和不解,同时利用好新媒体工具,积极引导舆论正向发展。
二是依法做好劳动争议调解工作。组建职工法律服务团,吸纳13名专业突出、热心公益的律师参与,明确法律援助工作流程及补贴标准,及时为职工提供专业、全面的法律咨询服务,引导职工依法理性表达诉求,今年接待职工来访100人次。联合市中级人民法院开展“法院+工会”劳动争议诉调对接工作,并在*市建立示范点,办理案件3件。三是全面提升工会法治建设水平。职工服务中心是各级工会组织开展法治宣传、服务职工的主要阵地。大力推动一站式职工服务中心建设,在全市范围内打造以市职工服务中心为龙头、乡镇(科局)职工服务中心为骨干,社区(村)职工服务中心为基础、企业职工服务中心为支撑的四级服务职工网络。服务中心设置了“政策咨询”、“法律援助”、“劳动争议调处”、“信访接待”、“心灵聊吧”和“权益维护”等服务窗口,促进工会法治建设进入了规范化、制度化和机制化轨道。
强化教育引导。不断加大对员工的形势教育,积极引导广大职工凝心聚力做好安全生产和改革发展等各项工作。各基层工会建设职工书屋、图书角,采取员工授课、师带徒、检修小课堂、现场观摩等多种方式,充分调动职工学习热情。注重发挥好典型示范引领作用,公司工会不断完善公司先进评选方案,确保先进评选具有典型性和先进性。文体活动异彩纷呈。组织郊游活动、迎新拔河赛、社区乒乓球和羽毛球赛、“伟大的变革大合唱比赛”等,职工乒乓球邀请赛暨职工趣味运动会、赛罕区职工运动会、“纵马青城”马拉松活动、“活力青城行”徒步迎新、成立并承办乌兰牧骑活动等,对内凝心聚力提升职工归属感和自豪感,对外展示员工积极健康的精神风貌,树立公司良好形象。(五)引导建功立业,巾帼不让须眉
二、下半年重点工作一、加强组织建设,增强工会凝聚力组织召开集团工会第五次会员代表大会,完成集团工会换届工作;督导督促应换届工会完成换届工作;依法建立中盛公司、环保公司工会组织,确保工会组织覆盖率和入会率为XXXXXX%,最大限度地把广大职工吸收和组织到工会中来,为工会及时增添新鲜血液;适时调整工会的组织体制、工作机制、工作方法和活动方式,进一步加强工会组织的民主化和法制化,增强工会自身活力和凝聚力。二、凝聚干事力量,助力集团和谐稳定持续开展“送温暖”系列活动。完善《大病职工应急救助暂行规定》,大力开展“金秋助学”活动,积极开展春节、中秋前夕困难职工救助慰问,做好全体会员福利发放、健康知识讲座、一线职工疗休养等工作。同时,广泛开展文体活动,丰富职工文化生活,注入企业文化建设新动力,凝聚集团稳定发展新力量。
4.全面推进小微企业工会经费返还工作。准确把握上级政策要求,对符合条件的小微企业继续开展工会经费主动返还工作,确保小微企业工会经费返还政策落到实处,帮助小微企业纾困解忧。(三)以更实的举措维护职工合法权益5.扎实推进阵地建设。坚持“资源共享、区域覆盖、联动发展、职工受益”的工作理念,继续加大对“**职工之家”“妈咪小屋”和职工子女托管班的创建、扶持力度。6.竭诚服务职工群众。继续开展“爱心驿站”及工会“四送”品牌工程,加大对户外一线职工、新就业群体、农民工等群体的特惠服务力度;优化职工医疗互助保障。(四)以更大的力度夯实工会组织基础7.认真做好工会换届选举。组织召开区工会*次代表大会,按照《中国工会章程》及相关规定做好换届选举工作。8.继续扩大工会组建覆盖面。集中力量开展工会“组建攻坚”行动,进一步规范和落实基层工会换届选举工作,确保工会组建依法合规,并以小微企业工会经费返还工作为契机推进工会组织对新就业形态劳动者的覆盖。
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
老师们、同学们,上午好!今天是第二十个全国中小学生“安全教育日”,所以,今天我讲话的题目是《珍爱生命,安全第一》,教育部长周济曾讲过这么一句话:“没有安全,何谈教育”,的确是这样,没有校园安全,哪来教育事业的发展。校园安全不但关系到每位同学能否健康成长,也关系到每个家庭的幸福。因此,我们必须清醒的认识到“安全无小事”。但校园安全事故每天都在上演,校园安全问题成了永恒的话题。楼道踩踏、食物中毒、溺水身亡、交通安全、违规用电、火灾火险、体育运动、网络交友、打架斗殴、流感病毒、毒品危害等等,这些校园安全事故时刻威胁着我们青少年学生的健康成长。下面我们听一听这些触目惊心的安全事故。XX年12月7日湖南省湘潭育才中学发生惨重的校园踩踏事件,一名学生在下楼梯的过程中跌倒,引起拥挤踩踏,造成8人死亡,26人受伤。XX年12月2日,山东东营某学校校车侧翻事故造成3名学生死亡。XX年12月8日,安徽省淮北市同仁中学篮球场边的高墙轰然坍塌,5名女同学的花季生命被永远定格在哪里。XX年4月27日,辽宁省葫芦岛市某中学6名学生校外私自游泳,溺水死亡。
老师、同学们:早上好!今天是第21个全国中小学生安全教育日,今年中小学学生安全教育日主题是“强化安全意识,提升安全素养”,我们学校把这一周定为安全教育周,主题是生命教育。学校根据这一主题将开展一系列的活动,各个班级要开好一个生命教育的主题班会,出好一期黑板报,同学们要阅读一本或一篇有关生命教育的书籍或资料;进一步认识生命,树立正确的生命观,欣赏生命、尊重生命、敬畏生命,直至热爱生命,以达到激发生命的潜能,提升生命的品质,捍卫生命的尊严;感受生命的美好,唤起生命的热情,体认生命的意义,实现生命的价值;学会对他人生命的尊重、关怀和欣赏,树立积极的人生观。同学们,生命最大的特征是“生生不息”,我们的生命源于父母,对父母要有感恩之情、思念之情、亲爱之情。“仁者爱人”,要从与自己最亲近的人爱起,扩展到爱他人,爱社会,爱万物。要明白生命之成长必扎根于社会文明、文化与传统的土壤中,与他人、与过去现在未来之一切人的生命相依相系。
尊敬的各位老师,亲爱的同学们:大家上午好!三月,是春风和煦、万木吐绿的美好季节,俗话说:“一年之际在于春。”人们把许多纪念日都放在了三月,如:3月5日“学习雷锋”纪念日,3月8日国际劳动妇女节,3月12日植树节,3月15日国际消费者权益日。今天我讲的是大家可能还不太熟悉的一个纪念日:那就是“全国中小学安全宣传教育日”。1996年由国家教委等有关部门规定,每年三月最后的一个星期一被定为“全国中小学安全教育日”。今天是第22个“全国中小学安全教育日”。我今天国旗下讲话的题目是:《珍爱生命,安全第一》。当我们随着一声清脆的啼哭声降落到人间,这就标志着又给人世间增添了一份宝贵的财富。因此我们要懂得在人生的路上走好每一步,处处小心,时时提防,保持警惕的头脑,绷紧安全之弦。事事处处想到“安全”二字。学校高度重视校园安全工作,采取了多种加强校园安全的措施。对同学们多次进行交通安全、运动安全、食品安全、用电用气安全、防火安全等教育,以提高我们的安全意识,提高我们自我保护的能力。但是,还有一些同学视安全隐患而不顾,如课间在走廊里打闹;上下楼梯时互相拥挤
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称量词命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题.解题技巧:(含有一个量词的命题的否定方法)(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.跟踪训练三3.写出下列命题的否定,并判断其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.【答案】见解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命题.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。