(我们马上都不说话了,贴着墙壁,悄悄地走过去。我吓得脚也软了,更跑不快。在忙乱中,我的书包掉了,鞋子也弄脱了。)
本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》第五章的5.5.1 两角和与差的正弦、余弦和正切公式。本节的主要内容是由两角差的余弦公式的推导,运用诱导公式、同角三角函数的基本关系和代数变形,得到其它的和差角公式。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。课程目标 学科素养1.了解两角差的余弦公式的推导过程.2.掌握由两角差的余弦公式推导出两角和的余弦公式及两角和与差的正弦、正切公式.3.熟悉两角和与差的正弦、余弦、正切公式的灵活运用,了解公式的正用、逆用以及角的变换的常用方法.4.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。 a.数学抽象:公式的推导;b.逻辑推理:公式之间的联系;c.数学运算:运用和差角角公式求值;d.直观想象:两角差的余弦公式的推导;e.数学建模:公式的灵活运用;
本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。 课程目标1、能够推导出两角和与差的正弦、余弦、正切公式并能应用; 2、掌握二倍角公式及变形公式,能灵活运用二倍角公式解决有关的化简、求值、证明问题.数学学科素养1.数学抽象:两角和与差的正弦、余弦和正切公式; 2.逻辑推理: 运用公式解决基本三角函数式的化简、证明等问题;3.数学运算:运用公式解决基本三角函数式求值问题.4.数学建模:学生体会到一般与特殊,换元等数学思想在三角恒等变换中的作用。.
通过以上工作的开展,我办软件正版化工作的推进取得了明显的成效,干部职工提高了对使用正版软件重要性的认识,增强了保护知识产权的化意识,确保了软件正版化管理制度的落实。二、2023年工作计划今后,我办将进一步做好软件正版化工作。一是坚决使用正版操作系统和办公软件,全力推动机关单位正版软件使用工作。二是加大软件正版化的宣传教育力度,提高机关工作人员对软件正版化工作的认识,促使工作人员自觉使用正版软件。三是建立软件正版化长效工作机制。我办将进一步完善正版软件采购工作机制,健全软件资产管理制度,建立正版软件安装使用台账,实现对正版软件采购、配置、升级、使用、处置等工作的动态监控管理。继续做好资金保障工作,严格按照软件正版化工作要求和实际使用需求,在年度经费预算和信息化项目建设经费中安排必要的软件采购资金。
1、逐步完善软件正版化的系统管理与制度的制定,建立软件正版化的长效机制。组织全镇干部职工学习软件正版化相关通知精神,进一步强化人员使用正版软件的意识,尤其是强化领导干部和信息技术人员的正版意识。2、对已安装软件重新进行部署。要求各部门、各村居卸载侵权的xx办公软件,安装相同功能的金山wps个人免费版。禁止各部门自行安装盗版软件。在经费允许的情况下,重点解决购买正版操作系统软件,逐步推进操作系统正版化。3、建立计算机软件管理档案,对正版软件进行登记和管理,对相关授权凭证和资料妥善保管。今后凡购置新的计算机,应一并同步考虑工作所需正版软件的购置,防止和避免使用盗版软件问题的发生。4、完善相关规章制度,以制度促进各部门内部使用正版软件,把使用正版软件当做事关国家网络信息安全和知识产权保护的大事来抓,确保软件正版化工作落到实处。
3、职责 3、1总经办:负责公司行政公章、法人印、合同专用章的统一雕刻、保管及使用,负责按要求刻制公司各类印章以及印章启用前的登记备案工作,负责公司作废印章的销毁。 3、2公司分管领导:负责用印文件的审批; 3、3采购部:负责报关专用章及报关法定代表人私章的管理及使用。 3、4计财部:因工作需要,财务部放置***公司法定代表人印鉴章一枚,由财务部负责其私章的管理及使用。
一、 目的:为维护公司及员工的合法权益,规范公司的组织和行为,根据《中华人民共和国劳动法》、《劳动合同法》、XXX餐饮投资管理有限公司相关人事规章制度,结合经营发展的实际需要,特制订本制度。二、 范围:本制度所称“总部”指XXX餐饮投资管理有限公司,所称“公司”XXX餐饮投资管理有限公司。三、 管理体系职责:(一) 总部HR职责范围:1、核定公司年度人员编制计划;2、核定公司年度人工费用预算;3、指导公司建立符合国家、地方法律法规的人力资源制度流程;4、定期对公司人事制度执行情况检查审核;5、分公司需要指导支持的其他工作。(二) 公司HR职责范围:1、严格执行国家有关劳动人事管理法律法规和条例,以及总部劳动人事制度;2、在总部核定编制预算范围内,根据招聘录用程序,自主招聘录用除经营班子以外的员工(其中部门经理及以上人员、高级营销人才等需通过总部人力资源部聘用资格的审核);3、按国家及当地地方政策,与员工签订劳动合同,执行员工在职管理、晋升及调动管理、离职管理;4、在总部核定人工费用预算范围内,依据总部薪资管理制度进行人员的定薪及发放;5、在费用预算范围内,制定并执行培训管理、绩效管理等人事管理制度;6、及时在人力资源信息系统中进行人员信息维护,保证人员信息的及时性及真实性;8、按总部要求按时上报人事资料至总公司备案;9、妥善处理员工争议及纠纷。9、其他总部需要配合执行的工作。
一、活动目标1、欣赏图片,感受城市、乡村各具特色的美景和生活。2、在辩论活动中了解城市和农村的不同生活方式,懂得适合自己的才是最好的。二、 活动准备:1、事先安排幼儿参观城市或者乡村,布置主题墙面的城市和乡村的图片。2、情景童话剧表演,布置场地。3、动画制作。4、城市和乡村的图片若干张
从规划看,城市规划科学性不够。当前我市在城市规划中还存在着一些不足和需要改进的空间,主要体现在“三个滞后”:一是城市规划设计滞后于城市开发建设,规划有时被建设牵着鼻子走,导致建设不科学不规范无秩序,特别是在高层次大格局谋划X发展上,与大X都市圈周边县市规划衔接不够,以五大功能新城为载体联动周边地区发展规划不够;二是基础设施配套滞后于经济社会发展,地下管网建设滞后,地下空间利用不足,道路和公共基础设施建设缺乏长远性和预见性,造成建设浪费;三是规划设计理念滞后于高品质城市建设需求,城市总体规划、修建性详规、控制性详规等缺乏前瞻性和引领性,对城市风格风貌、色彩色调、天际线岸际线把控不够精细,对城市特质、山水格局彰显不够鲜明。
四、说教学过程:首先,导入学习。开门见山式导入人类的地域活动联系,并设计提问在日常生活中,我们常用到的现代交通运输方式有哪些?引出第一部分内容“主要交通运输方式”的讲解。通过导入,让学生明确交通运输的重要性,对交通运输工具和方式有感性的认识,以便于下面教学内容的进行。其次,进入新课讲授。由于学生们对五种交通运输方式已经有感性的认识,因此在交通运输方式的优缺点方面的讲解上,可以充分发挥学生的主观能动性,通过自己阅读课本的图来学习五种主要交通运输方式的优缺点,以此培养学生的阅读能力和自主学习能力。对于交通运输方式的掌握,仅仅知道其优缺点还是远远不够的,要在此基础上通过提问引导出影响交通运输方式选择的因素,并通过实例与学生共同分析,选择出合适的交通运输方式,得出要综合考虑,本着“多、快、好、省”的原则,根据运输对象的特点和运输要求,选择最佳运输方式的结论。
师承转:交通运输网中的线布局受各方面因素的影响,同样交通运输网中的点布局也受各方面因素的影响,请同学课后查找资料。分析广州新的火车站选址番禺钟村、新机场选址花都各方面的因素。屏幕显示题目:请分析广州新的火车站选址番禺钟村、新机场选址花都的区位因素。课堂小结: 通过本堂课的学习,我们回忆了交通运输方式的发展变化,得出其发展趋势,并学习了现代几种交通运输方式的优缺点,如何选择合适的交通运输方式。一个区域内其交通运输网的形成历程,正是这个区域经济不断发展的历程。且学习了如何分析影响交通运输网布局的区位因素,这些区位因素会随时间的变化而发生变化。那么反过来,一个区域的交通布局发生变化后,会对该区域的经济发展,及至区域内聚落的空间形态和整个商业中心的分布也会产生影响,这我们下节课再来分析。
1、图12.5“浦东新区的规划图”首先了解浦东新区的位置,浦东新区位于黄浦江东部,东临东海,北濒长江,面积广阔,地形平坦,和上海市繁华的外滩和南京路只有一江之隔;其次要了解城市规划的功能分区。2、图12.6“浦东新区图”图中可见已建成陆家嘴、张江、金桥、外高桥、孙桥等功能分区,理解浦东作为现代化城市新区的格局已基本形成。3、图12.8“浦东新区的产业结构图(1997年)”读此图应该明确,浦东新区国民经济的主要支柱是工业,第二产业占62.1%,比重最小的是第一产业,仅占0.8%,为充分发挥浦东新区的龙头作用,今后该区应继续把第二产业放在首要位置,成为上海市高新技术产业和现代工业的基地。【教学内容】一、浦东新区的开发条件和作用建设城市新区是上海市发展的必然选择,建设新城区首先要选择合适的区域。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1、根据3、-3、3。5、-4。5、-5。2、8。5、4。0、-1。2引出正数和负数的定义及特征性质。① 像3、3。5这样大于0的数叫做正数;② 像-3、-4。5这样在正数前面加上符号“-”的数叫做负数。③ 根据需要,有时在正数前面加“+”号,例如+3、+2、+0。5……,就是3、2、0。5……。④ 一个数前面的“+”和“-”号叫做它的符号。⑤ 注意:0既不是正数,也不是负数.2、通过课堂练习1和课堂练习2引出相反意义的量的定义、《活学巧计》诗及做类似题时的方法总结。① 在生活中存在各种各样的量,其中有一种量,它们的属性相同(即同类量),但表示的意义却相反,我们把这样的量叫做相反意义的量.② 活学巧记 相反意义量成对,还要数量和单位, 你为正来我为负,正负兄弟齐上阵。