当Δ=l2-4mn<0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个点P;当Δ=l2-4mn=0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的两个点P;当Δ=l2-4mn>0时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的三个点P.方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.
三:巩固新知1、判断对错:(1)如果一个菱形的两条对角线相等,那么它一定是正方形. ( )(2)如果一个矩形的两条对角线互相垂直,那么它一定是正方形.( )(3)两条对角线互相垂直平分且相等的四边形,一定是正方形. ( )(4)四条边相等,且有一个角是直角的四边形是正方形. ( )2、已知:点E、F、G、H分别是正方形ABCD四条边上的中点,并且E、F、G、H分别是AB、BC、CD、AD的中点.求证:四边形EFGH是正方形.3、自己完成课本P23的议一议四、小结1.正方形的判定方法.2.了解正方形、矩形、菱形之间的联系与区别,体验事物之间是相互联系但又有区别的辩证唯物主义观点.3.本节的收获与疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
1)正方形的边长为4cm,则周长为( ),面积为( ) ,对角线长为( );2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为( ), 周长为( ),面积为( )3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性质是( ) A、四个角相等 B、对角线互相垂直平分 C、对角互补 D、对角线相等. 5)、正方形具有而菱形不一定具有的性质( ) A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________. 7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例1)学生自己阅读课本内容、注意证明过程的书写2、 如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
年会的通知与宣传:公司办公室于今天向机关各部门及各项目部发出书面的《关于XX年度年终总结会的通知》,对本次年会活动进行公示和宣传,达到全员知悉。
20XX.08~至今 XXX软件有限公司 文案策划l 负责微信公众号金融外汇内容的采编,润色和撰写;l 利用微信平台进行产品推广和社区论坛的用户引导、互动;l 负责公司市场营销活动方案的策划与组织实施,对外宣传资料和文案的撰写;l 负责软文、原创、伪原创的编辑、发布和热点关键词信息配合推广。20XX.02~20XX.07 XXX软件有限公司 文案策划l 进行市场调查,收集相关行业市场信息,并整理、分析,形成报告;l 定期收集竞争对手信息,了解竞争对手的动态,并整理、分析,形成报告;l 围绕公司品牌文化,编辑策划平台内容更新、专题策划及原创文章的上传;l 协助利用互联网社会化媒体进行网站的宣传和推广,论坛,博客,微博,新闻媒体等;l 根据业务需要制作各种宣传资料,塑造良好企业形象;根据公司市场战略和业务需要制定市场调查计划;
第三条甲方的权利和义务(一)甲方在本合同有效期内,可行使以下权利:1.为乙方安排财务会计工作,分配任务;2.监督检查乙方工作情况;3.在乙方工作成绩突出或对_________(公司)有重大贡献时,给予奖励;对乙方工作中发生的违章违纪行为,予以处罚;(二)甲方须履行的义务:1.使乙方及时获取劳动报酬;2.使乙方合理享受_________(公司)规定的待遇;3.为乙方履行职务提供一定的工作条件;4.依法维护乙方在履行职务时的合法权益;5.为乙方参加_________工会有关财会知识更新学习提供条件。
1.制作红灯笼师:(展示漂亮的灯笼)小朋友们想不想自己亲手制作一个呢?生:好呀师:那小朋友们知道制作灯笼需要什么材料吗?生:彩纸、剪刀...师:没错,那老师先来展示一下怎么制作灯笼吧!(展示完后,开始让小朋友两两组合共同制作)2.制作灯笼剪纸师:小朋友们,刚刚是不是已经制作灯笼了呀?下面我们进行一个更好玩的环节?生:好呀好呀!师:那我先来展示一下咯,小朋友们别眨眼呀!(展示完后,开始让小朋友们独立完成)小结:通过制作共同合作制作灯笼与独自完成灯笼剪影,不仅使他们更能感知灯笼的形状,更能提高小朋友们的动手能力和思考力。
文本分析《琵琶行》作为白居易最为出名的诗歌之一,内容详实,情感动人,在诗歌中,白居易塑造了两个形象极为鲜明的人物——琵琶女&作者本人。一个是江湖薄命人,一个是官场失意者。两个本无交集的人因为京都琵琶声相遇,互诉衷肠后,发出“同是天涯沦落人,相逢何必曾相识“的感慨
甲方: _xxx技服务有限公司 乙方: _xxx商贸有限公司__ 经甲方和乙方(甲方和乙方以下合称为“双方”)友好协商,根据《中华人民共和国合同法》、《中华人民共和国广告法》等的相关法律规定,双方本着诚实守信、互惠互利原则的基础上,鉴于甲方委托乙方就四海易购电子商务平台提供视觉设计服务,帮助甲方树立企业形象,扩大宣传,拓宽销售渠道,为明确双方责任,根据中国相关法律经双方协商,签订此合同,以期双方共同遵守。第一章 服务项目1.项目定义:根据甲乙双方友好协商,甲方委托乙方设计制作“四海易购”商城产品详情页面设计。2.服务内容:甲方委托乙方就附件一《详情制作目录表》提供产品详情页面设计服务,服务内容含以下表格所示:服务内容 产品详解产品拍摄 产品正面、反面、细节实拍等图片后期 图片拍摄完成之后的后期优化文案撰写 根据产品实际情况,撰写产品介绍文案详情页模板设计 宝贝详情页描述模板产品详情页设计 根据产品后期优化图片、文案、产品参数,设计并制作完整产品详情介绍页面店铺首页设计 根据产品策划店铺首页后台编辑 产品及页面的上传发布
甲方:天xxx事务所有限公司乙方:依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:甲方为乙方提供logo设计,服务内容如下:服务项目 服务内容 初稿交付期 收费标准基础Logo设计 客户提出对logo明确想法和需求后,设计师提供初稿3个,客户任选其一,在此基础上与设计师在线做进一步完善修改,合同期限内完成。 10个工作日 1000服务金额 合同总价:¥ 1000.00 大写: _ 零_万_ 壹 仟 零_佰_ 零 拾 零 元整 注:企业商标logo设计,可为文字、英文或图形设计 (文字和英文名称须由甲方提供),以上价格仅为满足其中一种设计要求的约定金额。为了使甲方为乙方提供更优质的在线设计服务,请细心阅读以下条款,这些条款规定了甲方与乙方之间的权利与义务:一、 关于知识产权约定甲方对版权的理解和定义是以《 中华人民共和国著作权法》 、 《中华人民共和国商标法》及《中华人民共和国商标法实施条例》为依据。 1、甲方对设计完成的作品享有著作权。乙方将委托设计的所有费用结算完毕后,甲方可将作品著作权转让给乙方(需另行签订转让合同)。但甲方享有署名权并保留用于参展,评选,展示的权利。乙方付清所有设计费后,甲方不得把此设计方案交给任何第三方使用。2、乙方在未付清所有委托设计费用之前,甲方设计的作品著作权归甲方,乙方对该作品不享有任何权利。
依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:一、合同内容和要求:_______________________________公司标志设计;二、费用:费用共计人民币¥_________元(大写:__________________)三、付款方式1.本合同签订后,甲方即向乙方支付合同总费用50%,即人民币¥_________元整;2.LOGO设计完成;甲方需向乙方支付合同余款,即人民币¥_________元整四、双方的责任与义务.1.乙方应按甲方要求按质按量完成相关设计工作。2.乙方需在规定时间______年_____月_____日至______年_____月_____日完成甲方公 司LOGO设计工作3.甲方有责任全力配合乙方开展本合同所规定的工作,并根据乙方需要提供相关资料。五、知识产权约定1.乙方对设计完成的作品享有著作权。甲方将委托设计的所有费用结算完毕后,乙方 可将作品著作权转让给甲方。2.甲方在未付清所有委托设计费用之前,乙方设计的作品著作权归乙方,甲方对该作品不享有任何权利。3.甲方在余款未付清之前擅自使用或者修改使用乙方设计的作品而导致的侵权,乙方有权依据《中华人民共和国著作权法》追究其法律责任。
一、委托事项甲方委托乙方为其公司进行 工作。 二、委托设计制作项目及费用项目费用:设计费用总共计:人民币 元,(大写 元整),总价不含税。 三、付款方式1、甲方需在合同签订当日支付项目总费用的50%给乙方,总计人民币 元,(大写: 元整)。2、乙方将全部设计工作完成,并由甲方确认后,经修改调整,甲方在确定设计方案后,需付清项目合同剩下余款,总计人民币 元,(大写: 元整)。乙方将设计源文件交与甲方。四、乙方设计制作的时间及交付方式1、乙方在收到甲方提供全部设计相关需要的资料之日起,乙方在 5 个工作日内提供设计方案给甲方确认。2、经反复修改,甲方最终确认设计方案后,甲方付给乙方余款,乙方提供给甲方设计源文件(可供印刷、后期制作的文件)3、设计完毕,甲方结清全部款项后,甲方如进行商标注册,注册不成功乙方可为其免费重新设计或修改。设计直到甲方满意为止。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。