教具、学具准备:各种形状的纸、树叶、绳子、直尺、卷尺等。教学过程:一、今天,老师给大家带来了一些物品和平面图形,你们认识吗?(逐一出示)谁知道周长是什么意思?请你具体指一指,你所喜欢的图形的周长是指什么样的长度。(一生指)二、探究求长方形和正方形周长的计算方法长方形和正方形的周长怎么求呢?正方形的周长只要量一条边长,乘4就可以了。(板书:边长×4)如果量出正方形的边长是5厘米,它的周长是多少?5×4=20(厘米)。长方形的周长呢?量出四条边的长度,加起来就好了。长+宽+长+宽(板书)。如果长是6厘米,宽是4厘米,它的周长就是:6+4+6+4=20(厘米)。只要量两次就可以了,量一个长再乘2,量一个宽再乘2就行。长×2+宽×2。即:6×2+4×2=20(厘米)。如果让你求长方形的周长,必须要知道什么条件?正方形呢?想清楚了,我们来解决一些实际问题。
4.操作。(“做一做”第2题) 全班同学动手操作,1名同学到投影仪上操作。 (1)第1行摆5个△,在△下面摆○,△要比○多1个。第2行摆几个○? (2)第1行摆4朵红花,摆的黄花比红花少1朵,第2行摆几朵黄花? 二、运用新知 教科书练习一第1~4题。 1.第1题:左图是猴子多,右图是骨头多。(避免学生产生思维定势) 2.第2题:学生观察,看到公鸡和鸭子虽然摆的一样长,但疏密不同,进而判断摆的密的鸭子的只数多些,而公鸡只数少些。 3.第3题:学生在观察到第一排蛋糕同样多的基础上,只需比较两盒中的第二排。第二排多的就多些,反之,就少些。 4.第4题:此题是在同一排中比较多少,当第5次循环出现珠子时,只出现了一个黄色珠子,所以黄珠子多而红珠子少。 三、总结 教师:今天我们学习了“比一比”,知道在比较时,一定要一个对着一个比,就会得到正确的结果。
教学内容:课本P104、108页。教学目标:1、通过复习使学生加深了解统计的意义。2、巩固学生对条形统计图的认知,明确用1格表示2个单位的表现形式,能根据统计图提出问题。3、在学习过程中培养学生的实践能力与合作意识。教学重点、难点:1、在复习中进一步了解统计的意义,加深对条形统计图的认识。2、能根据条形统计图的条件提出数学问题。教学过程:一、复习统计1、观察讨论(1)、教师出示条形统计图:这张图叫什么名字?它有什么作用?仔细观察统计图你有哪些发现?(2)、学生观察讨论,思考,依据自己的体验回答。仔细观察统计图,在小组内交流自己的发现。(3)、组织全班汇报交流,梳理统计图信息。2、回答问题根据条形统计图上的信息,你能回答下列问题吗?1)、最受二年级同学欢迎的饮料是什么?你是怎么看出来的?2)、喜欢哪两种饮料的人数同样多?你是怎么知道的?
(4)学校买10套课桌用500元,已知桌子的单价是凳子的4倍,每张桌子多少元?三、作业。第四课时课题:可能性和编码复习目标:1、认识简单的可能性事件。2、会求简单事件发生的可能性,并用分数表示。3、通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用。4、让学生学会运用数进行编码,初步培养学生的抽象、概括能力。一、基本练习。1、盒子中有红、白、黄、绿四种颜色的球各一个,只取一次,拿出红色球的可能性是多少?白色呢?2、商场促销,将奖品放置于1到10号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?3、盒子中有红色球8个,蓝色球10个,取一次,取出红色球的可能性大还是蓝色球?4、说出下面各组数据的中位数。
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
问题2、如何用测角仪测量一个低处物体的俯角呢?和测量仰角的步骤是一样的,只不过测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因为NE=AC=a,所以MN=ME+EN=l·tanα+a.
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
①分别连接OA,OB,OC,OD,OE;②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.五边形A′B′C′D′E′就是所求作的五边形;(3)画法如下:①分别连接AO,BO,CO,DO,EO,FO并延长;②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.六边形A′B′C′D′E′F′就是所求作的六边形.方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.三、板书设计
这样充分尊重学生的独立思考的过程与结果,鼓励学生想出多种方法计算,在学生汇报交流、反馈、评价中初步感受到转化的数学思想,获得成功的学习体验,之后教师评价:大家能把新的问题转化成已有的经验来解决,这种分析思考的方法很好,你们还能提出类似的问题吗?进而引入进一步的探索当中,教师作出这样的提示,这道题没有元角分,你们能把它也转化成已经学过的乘法算式吗?在学生独立思考计算的基础上,组织小组讨论,给每个学生展示自己思维的机会,教师深入小组收集信息,然后组织全班讨论,揭示算理,得出计算的方法。这一过程要重点突出算理的探索,使学生认识到小数乘法与整数乘法的联系,利用积变化的规律合理解释算理,通过学生亲身经历,主动参与,积极思考,自学交流等活动过程,使学生真正获得数学的知识和学习方法。
除数是整数的小数除法的计算步骤和试商方法与整数除法基本相同。它是在整数除法的基础上进行教学的。又是学生以后学习小数除法的基础,必须沟通小数除法和整数除法的联系,抓住新旧知识的连接点,紧密结合现实情境,展示学生对小数除法计算方法的探究过程,突出计算方法的教学,在掌握计算方法的同时更要理解算理。二.教学目标:1.通过自主探究、合作交流,理解小数除以整数的计算方法。2.正确地进行小数除以整数的计算,并能解决简单的实际问题。3.培养学生比较、分析和归纳等思维能力;以及类比、迁移的学习能力。4.通过学习活动,培养积极的学习态度,树立学好数学的信心。5.让学生感受数学与生活的密切联系,培养学习数学的兴趣。重点难点:正确地进行小数除以整数的计算,并能解决简单的实际问题是本课的重点,本课的难点是理解小数除以整数的计算方法,理解小数点为什么要对齐。
2、教材简析循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学的一个难点。课本的例8,是教学从某一位起,一个数字重复出现的情况,为认识循环小数提供感性材料。例9通过计算两道除法式题,呈现了除不尽时商的两种情况:一种是从某位起重复某个数字;另一种是从某位起几个数字依次不断重复出现。由此引出循环小数的概念并介绍循环小数的简便记法。接着教材用想一想的方式组织学生讨论“两个数相除,如果不能得到整数商,所得到的商会有哪些情况”。由两个数相除时商的两种情况,介绍有限小数和无限小数的概念。以前学生对小数概念的认识仅限于有限小数,到学习了循环小数以后,小数概念的内涵进一步扩展了,学生认识到除了有限小数以外,还有无限小数,循环小数就是一种无限小数。
2、试做例题,掌握转化方法明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:1、我认为小数除法如果按照教材按部就班教学有点不合理的,不利于学生从整体上把握小数除法,不利于学生对知识的建构。因此,我选择了重组教材。(把例5例6有机的结合在一起的同时也新增加了一个例题,那就是被除数小数位数比除数的小数位数多)。例5、例6和新增加例题的教学,引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。
出示计算错误的学生算式,让学生进行判别。说说为什么错,错在哪里。之前学生基本掌握了加法的计算法则,在此基础上先让学生尝试计算。让学生运用知识迁移的方法,类推出两位数加两位数连续进位的计算方法。再采用讨论、比较等方式学习。这样充分发挥知识迁移的效力,又可体现学生学习的自主性。2、尝试练习解决三个班级一共捐款多少元?由于1班和2班共捐了96元已求出,所以只要计算96+58。这题先让学生独立完成后在小组中说说你是怎么算的,通过向别人表达计算的过程来达到进一步掌握连续进位加法的方法,又培养学生的口头表达能力。(三)巩固练习练习可以让学生巩固所学的知识,并对所学知识有进一步地提升,让学生学有所用。
本节课的内容是课程标准人教版数学三年级上“万以内的加法和减法(二)”中加法的第二课时,是在学生掌握“个位相加满十,向十位进1”,两位数加两位数和是三位数的连续进位加法的基础上进行教学的。是学生学习笔算加法的难点。二、说教学目标根据《课标》提出的“加强估算,提倡算法多样化”的要求,本课把教学目标定位于下:1.使学生进一步理解加法计算法则,回笔算三位数的连续进位加法。2.学会结合具体情境进行估算。本节课的重点是用竖式计算以及对“哪一位上的数相加满十,就要向前一位进1”的理解,这也是本课的难点。三、说教法与学法注意以学生已有知识为起点,留给学生充裕的时间,充分体现学生自主探究的过程,在学习中让学生进行自主探索、讨论和交流。在交流中,教师适当引导,让学生充分发表意见和看法,决不能包办代替,同时在学生的独立思考和自主探究的基础上进行合作与交流在练习中注意提出估算的要求。
[设计意图:根据数学来源于生活的新课程理念,课前让学生回家搜集,课中让学生交流,与全班同学资源共享,在此基础上观察身份证上的内容,激发了学生参与学习的积极性。]3、讨论,探索规律。⑴合作讨论。①你们手中的身份证号码有什么相同点和不同点?②谁能介绍一下自已身份证上这些数字号码表示的意义? ⑵学生汇报。学生介绍发现的信息以及它们的含义。[设计意图:这是本节课的重点,为了引导学生探索身份证号码的编排规律,把学生分成4人小组,要求学生利用自己收集到的身份证号码、教材等学习资源,采取观察、比较、猜测等方法,探索身份证号码的编码规律,然后在全班交流学习成果,反馈学习情况,让学生初步了解身份证号码的编排特点。]
一、教材分析及学生分析:数学课程标准在各个学段中,安排了“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域。其中“统计与概率”中统计初步知识在一、二年级已经涉及,但概率知识对于学生来说还是一个全新的概念,它是学生以后学习有关知识的基础,并且概率问题是一个与社会生活关系密切的重要问题。因此在第一学段中对于“不确定现象”由感性升华到理性认识非常重要。对于三年级的孩子来说,由于他们的年龄和思维特点,他们一般只能在感性的层面理解可能性的知识,因此,在教学中,我们密切关注并考虑学生已有的经验知识,在学生已有的经验体会的基础上,设计各种活动丰富学生的经验积累,从而进行可能性知识的构建。
教材分析这部分内容是在认识钟表上的整时、半时的基础上进一步认识钟面上的时、分。分是非常重要的时间单位,也是进一步学习年、月、日的基础。时间单位不像长度、质量单位那样容易表现出来,比较抽象,学生不容易理解。所以,应以学生的生活经验为基础,把学习内容与学生的生活实际密切联系起来,进行教学。“我们赢了”是结合“北京申奥成功”这一情境,让我们记住这一历史时刻——2001年7月13日晚上10时08分。用记载着这一历史时刻的钟面,引导学生交流自己对钟面的认识,激活学生已有的生活经验;同时,抓住机会渗透爱国主义教育,引导学生关注社会,关心时事。学情分析学生在一年级时已经学过了钟面的简单知识并会认识整时和整时半。但有关时间的认知显得有些混乱,对时针和分针表示的意义分辨不清,多数孩子还不能读出准确的时刻。
(设计意图:让学生充分表述自己的想法,强化学生的应用意识,培养学生解决实际问题的能力。从中发现可能性会随着数量的变化而变化的。)(四)归纳总结,完善认知1、学生汇报学习所得。(使学生体验探索成功的喜悦)2、教师评价学习态度。(让学生感受学习数学我能行)五、板书科学设计简单明了,重点突出,加深对所学知识的理解和掌握。通过以上创新处理,营造宽松的学习氛围,为学生创造联想猜测、动手操作、合作交流、自主探究、解决问题的机会,使学生在“自主——合作——探究”的学习过程中,体验数学探索成功的喜悦,体会到数学课堂充满生命的活力。以上是我对本节课的一些设想,还有待于在实践中去完善,如有不当之处,敬请各位专家评委给予批评和指正。
(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。如果坐汽车,每小时行使60千米,4小时可以多少千米?如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
2、综合训练这道题的关键是,让学生理解木料的段数相当于排在两端的物体,锯的次数相当于排在中间的物体。这是对基本规律的联想和深化,提高了学生应用知识解决问题的能力。3、拓展训练我再次请出5位女生,围成一圈,要求两个女生中间站一个男生,又可以站多少个男生呢?引导学生认识到围成一圈时,间隔排列的两种物体的数量是相等的。这样的游戏设计,化直为曲,使学生体会到在直线上的间隔现象与封闭图形的间隔现象之间的联系与区别,体会规律的发展变化,从而提升了规律。最后进行课堂总结,布置一个实践性作业运用课上找到的规律,结合生活实际,做一个小小的设计。(如用彩灯布置教室,用美丽的图案打扮自己的卧室,设计美观大方的广场,设计有创意的游戏等。)通过布置开放性的作业,进一步把所学的知识和现实生活联系起来,培养学生的创新能力,使学生体验数学的价值。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。