【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
一、说教材:《六月二十七日望湖楼醉书》是国家统编教材小学语文六年级上册第一单元的一首文质兼美、情景交融的古诗,作者苏轼以精炼的文字展现了一场急来骤去的西湖雨。文章既有写景的语句,又隐藏人物内心活动,是一篇指导学生学习古诗很好的范例。1.教材地位:课标要求:阅读诗歌,大体把握诗意,想象诗歌描绘的情景,体会作品的感情。诵读优秀诗文,注意通过语调、韵律、节奏等品味作品内容和情感。以《六月二十七日望湖楼醉书》为例的古诗学习课,旨在让学生抓住诗中关键的字词感受诗歌的内容和情感。同时,以课标为准绳,把教材与学生生活联系起来,将同类型的古诗进行整合。在读懂《六月二十七日望湖楼醉书》的基础上,对同是写雨的古诗进行同类拓展,对于学生诵读积累优秀诗文具有一定指导作用。
(2)长征精神的内涵。生:长征是宣言书,长征是宣传队,长征是播种机。大家好!我来和大家分享我们组关于长征精神的探索。课件出示:长征精神的内涵,实际上就是红军在长征途中表现出的对革命事业无比的忠诚、坚定;不怕牺牲、敢于拼搏的无产阶级乐观主义精神;顾全大局、严守纪律、紧密团结的精神。这些构成了伟大的长征精神:不怕牺牲、前仆后继、勇往直前、坚韧不拔、众志成城、团结互助、百折不挠、克服困难、忠诚爱国。生:对于当代青少年如何传承长征精神这一问题,我们认为:课件出示:长征精神是革命先辈留给我们的宝贵财富,作为当代中学生,我们要树立崇高的理想和信念,保持和发扬艰苦奋斗的作风、弘扬集体主义精神,脚踏实地为实现革命理想和争做社会主义事业的可靠接班人而努力。
在教学中我力求做到以下几点一、体现“活动性”,让学生在活动中体验。《新课标》明确指出:“让学生在具体的数学活动中体验数学知识。”因此,我在新授部分以学生喜欢摸子活动开始,以期激发他们学习的热情和兴趣,使学生在活动过程中感知“一定”、“可能”、“不可能”,进而能判断生活与数学中的“一定”、“可能”、“不可能”这三种情况。并能用自己的语言描述事情发生的三种情况;(然而在课堂中,让学生把这三个词语放在一起例举数学与生活中的实例吧,学生说起来还是有一定难度的,所以在教学中我只有通过自己先举例在让学生说,这时学生才能说出例子来。)最后又让学生小组合作学习感知体验可能性是有大小的,达到巩固与应用的目的。
·演示口算过程2、解决“踢毽的和跳远得各有多少人?”a、引导学生观察画面,并提出问题。b、 让学生在画面中收集数据。c、 学生独立列式,并让学生将是怎样计算出结果的。3、分利用教材资源,尝试提出新问题。a)收集信息及数据。引导学生观察画面:运动场上除了踢毽和跳远之外,还有哪些比赛项目?参加这些项目比赛的各有多少人?b) 小组交流,提出要解决的问题。教师问:你还能提出哪些加法计算的问题?小组讨论后发表意见。c)解决同学们提出的问题。d) 小结。教师提问:仔细观察黑板上的算式,他们的第一个加数是几?(引出课题)计算9加几的题目有很多种方法,你喜欢哪一种就用哪一种.4、 反馈练习游戏:小精灵算式。你想上来摘哪道就摘拿道。拿到算式的学生进行计算,没拿到算式的同学做裁判
这是一个所有学生都非常熟悉的学习生活事例,这个事例中包含着基数和序数知识。通过这个活动,可以使学生实实在在地体会到生活中的数学,切实感受数学与自己学习生活的密切联系,使他们学会用数学的眼光去观察身边的事物。5、锤子、剪刀、布这是一个学生都非常感兴趣的游戏,游戏蕴涵了统计和比多少的知识。这样既巩固了比多比少的知识,又使学生体会了比多少的知识在实际生活中的应用,同时还让学生学习了简单的数据整理的方法。教学目标:1、进一步掌握10以内的数的大小顺序,加深对基数和序数的认识,以及10以内数的加减法,提高口算能力。2、灵活运用知识解决问题的能力和与他人团结合作的能力3、培养学生团结合作的意识,体验学数学、用数学的乐趣。
小组交流汇报: ①、20以内加减法知识 教师结合学生的问题,引导学生运用不同的方法得出各项活动的总人数,对于有道理的都予以肯定。如结合“踢球有多少人?”可以有多种方法: 生1:从图上看到守门的有1人,踢球的有的14人,求一共有多少人?列式为1+14=15(人) 生2:黄队有7人,蓝队有8人,求一共有多少人?列式为7+8=15(人) 生3:戴帽子的队员有1人,没戴帽子的有14人,一共有多少人?列式为1+14=15(人) ②、几和第几的知识 师:刚才有小朋友提出跑步的分别是第几名?小朋友们就来当一回裁判,老师指着哪一位小运动员,你们就举起手中“第几”的卡片来说说他们的名次。 (三)尝试统计 按学生对活动的喜好将学生分成五组。 每小组统计所学活动的人数,用笑脸图片表示,最后每一组把笑脸图贴到教师出示的大统计图上。
4、学习有关0的加减法我为学生创设一个丰富的问题情境,鼓励学生大胆发表自己的意见并进行交流,在情景中亲身体验关于0的加减法计算及在生活中的应用。用3只小鸟飞走了的情景图,教学得数是0的减法的意义;通过两片荷叶上的青蛙图,教学有关0的加法。出示图画,让学生仔细观察,互相交流说说看懂了什么,并根据图意列出算式,理解算式所表示的意思,,集体交流不同想法然后举出生活中这样的例子。在这一环节的教学中,我充分利用教材资源,将原来教材中静态的图动态化,让学生在生动、有趣的情境中学习数学。然后,创设情境,用所学来的知识帮助学习伙伴解决难题,激发学生强烈的探究,解疑的欲望。最后,通过学习过程中所列出的算式,让学生自己总结、归纳出有关0的加减法算式的规律,体验成功的乐趣。
观察:先让学生观察自己的小闹钟,看看钟面上有些什么。交流:然后在小组内交流讨论自己的发现。汇报:学生汇报观察及讨论结果,教师板书:时针分针12个数讨论:时针和分针的区别。(在汇报观察结果的时候学生通常会说到秒针,当学生说到秒针的时候应肯定学生观察得很仔细,同时教师说明秒针走一圈才一分钟,我们在看时间的时候通常只看时针和分针就可以了,有关秒针的知识我们以后再学习。)2.教学整时(1)出示2时的钟面,让学生说说表示的是什么时刻?你是怎么知道的?学生说出后教师引导:2点,还可以说成2时。(2)再出示4时,让学生再说说是什么时刻,并同桌互相说说自己是怎么知道的。(3)出示8时,让学生说说是什么时刻,同时谈谈这个时刻我们一般该干什么呢?
第一步骤是初步认识钟面。在这一部分内容里,我注重利用学生现有的生活经验,引导学生观察课件上的钟面和自己的学具钟面看发现了什么?充分让学生说一说,数一数,主动探索,观察解决问题.把自己的发现和同桌的小朋友交流。在交流的过程中,学生的思维是凌乱的不是有序的,不容易将知识转为内化。如:有的学生发现有长针也有短针等,在教学设计中,我充分地考虑到这一点,采用了多媒体辅助教学,让时针和分针作自我介绍,用充满童真的语言来吸引学生,接着让学生观察1-12各数是怎样排的?用手比划一下,并说明时针和分针也是按这个方向转动的,还强调了时针走的慢,分针走的快的特点。这样的组织让学生的思维有序了,同时也培养了学生语言表达能力,这比老师直接给予答案,更能使学生记忆深刻,充分体现了学生为主体老师为主导的原则。
(三)联系生活实际,学会运用数 在学生认识了1—5各数以后,设计游戏,让学生在自己身上,教室里,家里找一找,数一数,并用学过的数说一句话. 这样就让学生把生活实际与数学较好的联系起来,学会在生活中运用数学解决问题. (四)动手操作圆片,学会比较数的大小 1,认识数的意义以后,让学生自己摆圆片,摆一摆,比一比,哪个数大,你是怎么想的 渗透了自然数的计算单位和相邻两个自然数相差1. 2,认识数的大小以后,进行猜数游戏,如5的前面是几 3的后面是几 还有可能是几 通过反复练习,学生较好的掌握了数的大小比较这一知识点. 3,最后学习写数.写数是本堂课的另一个重点,教师要培养学生良好的写字习惯.学生对1——5各数早已很熟悉了,主要是引导学生规矩,工整的写数.这一教学环节就要充分利用电脑软件的直观性,清楚的显示1——5各数运笔的轨迹,先让学生观察,感知,再通过描红,独立书写达到预期的效果.
教材分析义务教育课程标准实验教科书数学(人教版)一年级上册,把8和9的认识放在同一节课中完成,编排与前面6和7的认识基本上一样,只是要求更高。教材中提供给学生数数的资源虽不如6和7明显,却更丰富。提供给学生数数的对象是以“热爱自然,保护环境”为主题的生动画面,其内容有人、花、树、花盆、蝴蝶、黑板上的字等。画面除数数外,还体现了环保教育的主题。8和9的序数意义仍是采取6和7的编排方法,不同的是让学生更具体地感受几和第几的意义的不同。学生分析班上学生对数学学习的兴趣浓厚,敢想、敢说、敢问,思维活跃。低年级学生好奇心强,渴望动手参与的愿望强烈,为了让学生主动参与到学习过程中来,我根据一年级学生的心理特点,在学习6和7的认识时,我就尝试让学生课前收集了一些生活中的6和7,并制成剪贴图。没想到学生的信息量还挺大,制成的剪贴图也很生动、活泼。但在认识6和7的序数意义时,有一些不足,有一部分学生对几和第几的概念还有些模糊。
新《课程标准》中指出:“数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程,数学教学应从学生的实际出发,创设有助于学生学习的问题情境,引导学生思考、探索、交流、获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下主动地、富有个性地学习。”整节课以动画人物情境贯穿于始终,充分调动学生学习的积极性和主动性,来完成本课的教学任务。上课伊始我播放一首学生熟悉的动画片《虹猫蓝兔七侠传》的片头曲《人生不过一百年》,创设教学情境,贴近学生的生活,自然引出7个动画人物。不仅复习了1—5,而且顺利引出新课。接下来的探究新知阶段,继续以为七剑合壁解决困难为情境线索,将新知自然呈现在学生的面前,使学生通过自主、合作探究的学习方式,完成6和7的数数、认数、数序、比较大小、序数意义以及书写的学习。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。