一、加强教学管理和教学研究,进一步深化课堂教学改革1、夯实课改,进取推进新课标实施进程。作为改革实验学校,教务处继续进取认真组织全体教师深入学习新课标理念,体会新课标精神,明确新课标要求,面向全体学生,改变学习方式。良好的教研氛围,提高了教育教学质量。2、继续加强教学管理,完善规章制度,强化教学的规范化、制度化、科学化。加强常规检查,本学期教务处随机抽查、集中检查教师的教案,并进行记录,对存在的问题进行个别反馈。对学科测验、作业批改实施掌控并深入到各年级、班级了解情景。全面了解教学情景,不定时检查教师课堂教学情景,注重教学质量的全过程监控。组织各教研组定期与不定期检查教学计划等。规范学生学习习惯,重点抓好读书、写字的正确姿势,经过开展写字比赛、作业检查等方式进行强化。
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。
今天我选定的课题是幼儿园大班语言《七彩世界》主题里的一个语言教育活动《调皮的七彩光》,下面,先说说我的设计意图。经历了小班、中班的学习过程,大班幼儿的求知欲更强了,他们不但对五彩缤纷的颜色十分喜爱,而且更对五彩缤纷的自然界充满了好奇心,他们会由自然界中红彤彤的苹果、黄澄澄的梨、蓝蓝的大海、绿绿的草地等景象的观察及认识引发出更深一步的思索:大千世界为何会有这么多的颜色?这些美丽的颜色是怎么来的?…… 通过《调皮的七彩光》这个故事就可以让幼儿知道:色彩来源于光的作用,是调皮的七彩光娃娃从天空来到地上“玩”出来的。我们的身边处处都有七彩颜色。有了七彩颜色,画画更美丽,打扮东西更漂亮,游戏起来更有趣。本活动有利于帮助幼儿成为色彩世界的探究者,发现自然界中的许多奥秘,培养幼儿对自然界探究的欲望和对生活的热爱,感受生活的乐趣。
能正确、流利、有感情地朗读课文,背诵课文,并学习生字,积累词语。???????????????(2)过程与方法目标:借助多媒体课件等资源,创设情境,引领学生自主探究,互动交流,在读中理解,读中感悟。? (3)情感态度与价值观目标:体会红军大无畏的英雄气概和革命乐观主义精神。? ?三、说教学重难点:? 1.抓住重点诗句品读感悟,体会红军大无畏的英雄气概和革命乐观主义精神。?2.理解本诗高度的艺术概括性和极度夸张的手法。?四、说教法这首诗的时代背景是红军长征时期,离学生的生活年代比较远,学生要把握诗中的思想感情有一定的难度。根据学生实际情况和课文特点,我主要采用“情境教学法”和“朗读体会法”,即通过反复朗读,让学生读出诗的韵味,在读中理解诗意,在读中感受毛主席及其领导的中国工农红军大无畏的革命精神和英勇豪迈的气概,达到熟读成诵的效果。另外,利用创设情境法,将学生带入特定的历史背景中,让学生合作学习、小组交流,为学生营造了一个和谐的课堂氛围。
尊敬的老师,同学们:大家好!今天我发言的题目是《战胜挫折,走向成功》。古人云:人生不如意,十有八九。挫折是人生的必然,是指个体在从事有目的的活动中,遇到了障碍或干扰,导致其动机不能实现,需要不能满足时产生的情绪反应。如同人生的影子,它将伴随着每一个人前进的脚步。虽然谁都期望一生中一帆风顺,事事如意,但是或早或迟,或大或小,总难免遇害上各式各样的挫折。认真准备考试,却没有得到理想的成绩;以诚待人,却换来嘲讽的目光……这些困难都会给我们造成挫折感。面对这些失败,我们会难过,会哭泣,然而,困难不会因泪水退却,人生的磨难也从来不会给出软弱的心灵让座,不能让沮丧把青春的果实泡得霉烂。是逃避,还是奋起?我想大多数人会选择后者。挫折能使人真正的保持聪明和清醒。当遇到挫折和不如意时,越是回避越难以解脱,只有敢于直面它,掌握和运用正确的方法,这才能逐渐走向成熟。作为重点中学的学生,中考、高考的落榜应该是较大的挫折之一吧!落榜时,多年的努力付诸东流,那种痛苦是无法用言语来形容的。落榜带来的创伤是难以愈合,但是我们能做的就只是哭泣,沉沦吗?相信大家都听过张继的《枫桥夜泊》吧!这首流传千古的名诗正是他科举落榜后写的。
主题教育开展以来,XX省审计厅对标D中央部署和省委要求,一体推进理论学习、专题调研、检视问题整改、推动发展,推动主题教育走深走实。始终把理论学习摆在首位。通过强化以上率下带动学、强化融合互促联动学、强化重点践行学、强化措施督促学,厅D委班子成员带头读原著学原文悟原理,以“专题授课讲+审计一线讲+青老联学讲”等方式为审计D员干部讲授专题D课6次,召开中心组专题学习研讨会3次,开展D支部(含审计组临时D支部)学习研讨56次,开展1次审计青年D员“书香黔审、青春悦读、岗位建功”主题读书分享会,召开1次主题教育青老联学座谈会,专题学习、反复重温对审计工作作出的重要讲话和重要指示批示。采取“请进来+走出去”方式举办1期读书班和2期处级干部培训班,多次开展专题辅导交流研讨、小组研讨、中心组集中研讨等方式,推动个人自学与集中领学、互动研学、专家导学、视频教学有机融合。主题教育读书班被省主题教育办评价等次为“好”,相关做法被省主题教育简报和《XX日报》刊载。定期督促引导审计D员干部学好“必读篇”,深学“业务篇”,掌握“最新篇”。
把学习贯彻有关主题教育系列重要讲话,与学习贯彻对福建、对民政工作的重要讲话重要指示批示精神结合起来,与学习贯彻D的二十大精神结合起来,做到一体学习、一体领会、一体贯彻。四是丰富形式“乐学”。制定局机关青年理论学习计划,开展“青年大学习”行动,结合“中秋、国庆”两节举办“感悟思想伟力、书写青春华章”青年读书分享会,开展形式多样的“三会一课”、主题D日活动,通过寓教于乐,增强学习吸引力和感染力。五是警示教育“促学”。结合全市民政系统突出问题专项治理,开展警示教育,组织全系统D员干部职工开展旁听巡听、观看警示教育片,召开警示教育大会,以案释纪、以案释法,用身边事教育人,坚定不移推进全面从严治D向纵深发展,持续营造风清气正的良好政治生态,扎实推进主题教育走深走实。六是现场交流“活学”。组织D员干部到闽西革命历史博物馆开展现场教学,深入了解革命时期闽西人民在中国共产D领导下所进行的可歌可泣的革命斗争历史,更加深切地感受、朱德等老一辈无产阶级革命家对中国革命事业作出的重大贡献,达到学思想、强D性、重实践、建新功的效果。
人居环境整治工作既是攻坚战,也是持久战,需要我们常抓不懈、久久为功,各位要坚决克服厌战情绪和侥幸心理,牢固树立“逆水行舟,不进则退,慢进也是退”的理念,争分夺秒抓整治、全力以赴促整改,同时要保持工作韧性和连续性,杜绝“三天打鱼两天晒网”,确保长效管理不松懈、严抓共管不放松、清理彻底不反弹。同志们,人居环境整治工作既是一项民生工程,更是一项民心工程,我们既是建设者,更是受益者。希望大家回去后立即部署、迅速行动、精准发力、狠抓落实,让群众切实感受到人居环境整治的热潮,以时不我待的紧迫感、舍我其谁的使命感、造福一方的责任感推动农村人居环境整治工作再上新台阶,共同把这一事关农业农村高质量发展和群众幸福生活的大事、好事抓好抓实。
三要继续强化督查检查,建立长效机制镇人居办要常态化开展督查检查,深入一线发现问题,做到早发现、早制止、早处置,防止小问题变成大麻烦。要明确部门责任、村(街)责任,责任到人,对思想上不重视、行动上不积极、整改上不彻底的单位和个人进行通报,对在上级考核中出现严重问题的将严肃处理。人居环境整治工作既是攻坚战,也是持久战,需要我们常抓不懈、久久为功,各位要坚决克服厌战情绪和侥幸心理,牢固树立“逆水行舟,不进则退,慢进也是退”的理念,争分夺秒抓整治、全力以赴促整改,同时要保持工作韧性和连续性,杜绝“三天打鱼两天晒网”,确保长效管理不松懈、严抓共管不放松、清理彻底不反弹。同志们,人居环境整治工作既是一项民生工程,更是一项民心工程,我们既是建设者,更是受益者。
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。