教学目标 知识目标:通过欣赏大自然的图片,感知大自然不同特点的美。 技能目标:能用自己喜欢的方式表达对不同自然美的感受。 情感态度与价值观:培养学生热爱大自然的情感,及爱护大自然的情感。 教学重点让学生感受大自然不同的美,了解大自然的丰富,并能用简单的语言表达自己的感受。 教学难点学习用审美的眼光去观察大自然。 主要教法启发引导法、自学尝试法 学习指导体验探究法辅助指导法 教学资源教师:教材、课件。 学生:教材、自然风光片 教学过程: 教学活动教学意图 教师学生
通过活动让学生思考:回答问题。对学生的不同回答,只要合理,就给以认可。设计意图:让学生学会有条理的表述自己的思考过程,理解三种数据都是刻画了一组数据的平均水平。整个授课的过程中,由于问题的难点进行了分解突破,问题的解决水到渠成。同时要学生意识到:学会用数据说话,科学地分析身边的事例。5.归纳小结,巩固提高。(1)列表对比平均数众数中位数概念注意点(2)在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际进行选择,对于同一份材料,同一组数据,不同的目的,应选择不同的数据代表。因从不同的角度进行分析时,看到的结果可能是截然不同的。作为信息的接受者,分析数据应该从多角度对统计数据作出较全面的分析,从而避免机械的,片面的解释。
学生在观察和讨论后,由师生合作,归纳出中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.让学生尝试自己证明△ABC与△A′B′C′全等,然后在教师的引导下相互交流。接着,对“轴对称”和“中心对称”的概念进行比较,我采用列表格的方式,从三个方面分别让学生去填,意图让学生把新学的知识及时纳入到已学的知识体系中去。4、灵活运用体会内涵1)首先讲授例1。(1)选择点O为对称中心,画出点A关于点O的对称点A′;(2)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(3)已知四边形ABCD和O点,画出四边形ABCD关于O点的对称图形。在老师的引导下,共同完成作图,并规范画图方法:要画一个多边形关于已知点的对称图形,只要画出这个多边形的各个顶点关于已知点的对称点,再顺次连接各点即可。在本次活动中,意图利用中心对称的性质进行作图,加强对中心对称性质的理解。
5、课本练习:P129引导学生运用随机数表来模拟试验过程并给予解答。问题2:有四个阄,其中两个分别代表两件奖品,四个人按顺序依次抓阄来决定这两件奖品的归属,先抓的人中奖率一定大吗?教法:可组织学生用试验的方法来说明问题,对于试验的结果是有说服力的,很容易使学生相信摸奖的次序对中奖的概率没有影响。问题3:彩民甲研究了近几期这种体育彩票的中奖号码,发现数字06和08出现的次数最多,他认为,06和08是“幸运号码”,因此,他在所买的每一注彩票中都选上了06和08。你认为他这样做有道理吗?教法说明:要让学生看到试验方法对试验结果的影响:1、 因为开奖用的36个球是均匀的、无差别的,所以每个号码被选为中奖号码的可能性是一样的,不存在“幸运号码”。
六、说学法本节课的学法主要是自主探究法、合作交流法。教法和学法是和谐统一的,相互联系,密不可分。教学中要注意发挥学生的主体地位,充分调动学生的各种感官参与学习,诱发其内在的潜力,独立主动的探索,使他们不仅学会,而且会学。学生通过小组合作的方式,自主探究设计出秋游方案,然后每个小组间进行交流,最后推选出最合理可行的方案。学生通过解决生活中的实际问题,从中发现与数学之间的联系。并通过同伴间的交流、讨论等多种方法制定出解决方案,他们从生活中抽象,在实践中体验,最后在讨论中明理,从而得出了最佳的方案。七、说教学过程为了能很好地化解重点、突破难点达到预期的教学目标,我设计了三个教学环节,下面,我就从这三个环节一一进行阐述。(一)创设情境、激发兴趣
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
一、说教材图形的放大与缩小是人教版数学六年级下册第四单元《比例》中的内容。以前学生对比、比例、比例尺有了初步的认识和了解,对比、比例的意义进行了研究,通过学习,学生对比、比例、比例尺有了很深刻的认识。二、说教法、学法教法:本节课我采用具体的实验操作,让学生动手画一画、比一比、看一看等方法,从而发现图形的放大与缩小与原图比较只是大小变化,形状没变。学法:教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想,学习的整个学习过程围绕着教师创设的问题情境之中。 三、教学重、难点重点:能在方格纸上按一定的比将简单图形放大或缩小。难点:使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
一、说教材本节课是北师大版小学二年级数学上册第六单元测量中第一课内容。课标要求经历“直接比较、运用非标准长度单位测量、运用标准长度单位测量”三个过程,这样可以帮助学生对标准长度单位的意义有充分的理解。本节课通过测量活动,让学生体会量的概念,为后续正式学习长度单位做好准备。二、学情分析学生在一年级时已经积累了比较直接长、短的活动经验,对长和短有了一定的认识,能想出很多测量的方法。但由于学生年龄小,引导学生小组内互助解决问题尤为重要。三、说教学目标1.知识目标:积累测量活动经验,发展度量意识和能力。2.能力目标:经历用不同方式测量教室长度的过程,体会测量方式、测量工具的多样性。3.情感态度价值观:在测量活动中培养学生互助、交流表达的能力。四、说教学重、难点教学重点:积累测量活动经验,发展度量意识和能力。教学难点:在测量活动中培养学生合作互助、交流表达的能力。
一、说教材图形的放大与缩小是人教版数学六年级下册第四单元《比例》中的内容。以前学生对比、比例、比例尺有了初步的认识和了解,对比、比例的意义进行了研究,通过学习,学生对比、比例、比例尺有了很深刻的认识。二、说教法、学法教法:本节课我采用具体的实验操作,让学生动手画一画、比一比、看一看等方法,从而发现图形的放大与缩小与原图比较只是大小变化,形状没变。学法:教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想,学习的整个学习过程围绕着教师创设的问题情境之中。 三、教学重、难点重点:能在方格纸上按一定的比将简单图形放大或缩小。难点:使学生知道图形按一定的比放大或缩小后,只是大小发生了变化,形状没变,从而体会图形相似变化的特点。
板书:多民族文化对中华文化的意义师:中华民族是多民族的共同体,中华文化呈现多种民族文化的丰富色彩。中华各民族的文化,既有中华文化的共性,又有各自的民族特性。它们都是中华文化的瑰宝,都是中华民族的骄傲。各兄弟民族文化相互交融、相互促进,共同创造了中华文化。各族人民对共同拥有的中华文化的认同感和归属感,显示了中华民族厚重的文化底蕴和强大的民族凝聚力。问题探究8温家宝总理在美国会见华侨时满怀深情地说,中国已解决了香港问题和澳门问题,洗刷了百年耻辱,现在剩下一个台湾问题,“这一湾浅浅的海峡是我们最大的乡愁、最大的国殇”。用有关知识分析:为什么“这一湾浅浅的海峡是我们最大的乡愁、最大的国殇”?生1:台湾是中国的一部分,台湾各族人民是中华民族的一部分,台湾文化归属于中华文化。生2:传统的民族文化是维系民族生存和发展的精神纽带。
环节三:多媒体继续展示石窟艺术、民族文学等,学生在感受少数民族文化成就的过程中不难得出结论:各民族文化都为中华文化作出了重要贡献,都是中华民族的骄傲。由此进入第三目“中华之瑰宝,民族之骄傲”。各族人民对中华文化的认同感和归属感,显示了中华民族厚重的文化底蕴和强大的民族凝聚力。环节四:合作探究中华文化博大精深的原因。学生调动已有历史知识储备和课前搜集的材料分组交流:历史上在思想文化方面,对诸家学说所采取的兼收并蓄的学术主张;中国文化长期吸收周边少数民族的哪些优秀文明;在对待外域文化上,中华民族是否敞开博大胸怀扬弃吸收。2、从现代找出能充分体现中华民族的文化开放心态和中华文化非凡融合力的例子。这样可增添几分时代气息,更好地服务于当下实践。
设计意图:知识的掌握需要由浅到深,由易到难.我所设计的三个例题难度依次上升,根据由简到难的原则,先让学生学会熟悉选用公式,再进一步到公式的变形应用,巩固知识.特别是第三题特别强调了运用法则的前提:必需要底数相同.为加深学生对法则的理解记忆,形成“学以致用”的思想.同时为了调动学生思考,接下来让学生进入反馈练习阶段,进一步巩固记忆.4、知识反馈,提高反思练习1(1)口答设计意图:根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过让个别同学上黑板演演,其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.同时,在活动中引起学生的好奇心和强烈的求知欲,在获得经验和策略的同时,获得良好的情感体验.
4、巩固新知,拓展新知(羊羊竞技场)本环节在学生对性质基本熟悉后安排了四组训练题,为避免学生应用性质的粗糙感,以小羊展开竞技表演为背景,让学生在轻松愉快的氛围中层层递进,不断深入,达到强化性质,拓展性质的目的。提高学生的辨别力;进一步增强学生运用性质解决问题的能力;训练学生的逆向思维能力,增强学生应变能力和解题灵活性.5、提炼小结完善结构(羊羊总结会)“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结。设计意图:使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。6、课堂检测,发展潜能(大战灰太狼)
让学生先独立解决⑴题,再小组交流⑵题的答案,找到解题的方法.2、例2,例3是对平方根概念的巩固与拓展,在例2中由于学生还不熟于平方根的表示方法,所以应在平方根的概念和±号上加以明确,而例3则要把握平方根概念的本质,根据该数的正负或0来确定其平方根,这部分内容可用板演或展台展示结果的方式进行,让学生独立完成,应给予恰当的评价.3、最后,我又设计了一道辨析题:在做一道求4的平方根的题目时,小明说:“4的平方根是2”,小红说:“4的平方根是-2”,小强说:“2是4的平方根”小芳说:“-2是4的平方根”,请问他们的说法正确吗?通过这道题目,使学生在熟悉平方根概念的基础上更加深理解,同时对以往五种运算中从未出现过的一题两解的现象作出了解释,使学生明白了一种整体与局部的关系,再一次突出了重点.
情景感知概括运用设疑诱导动手操作合作交流尝试活动启发引导类比发现演练结合观察分析自主探索问题讨论利用尝试活动“我来当老师!”给学生提供设计问题的机会,培养他们实事求是的科学态度,勇于质疑、敢于创新的良好习惯及数学应用能力。例1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?通过罗列一些似是而非、容易产生错误的对象让学生辨析,促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构。例2:解答下列问题:(1)993-99能被99整除吗?能被98整除吗?能被100整除吗?(2)求代数式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。让学生进一步体会用分解因式解决相关问题的简捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),则m=,n=。
三、说教法和学法:1、说教法:本节课采用几何画板与电子白板相结合的教学手段,使操作过程形象、直观呈现,以便学生更好的理解。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,2、说学法:根据本节课特点和学生的实际,在教学过程中给学生足够的时间认真、仔细地动手书写证明过程,使学生的学习落到实处。同时,培养学生科学的学习方法和自信心。四、说教学过程设计教学过程的设计有:1、问题引入新课:七年级已经学习三角形内角和定理内容。这样从已经学过的知识引入,符合学生的认知规律。在拼图活动中发展思维的灵活性、创造性,为下一环节“说理”证明作好准备,使学生体会到数学来源于实践,同时对新知识的学习有了期待。
【设计意图】:这一环节的设计主要是为了培养学生自主学习的能力,让学生在自学中初步认识概念。通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。(三)例题讲解学生活动4:(由于例题都比较简单,所以让学生自己先做,教师巡视指导)例1、写出图中A、B、C、D、E各点的坐标。例2、在直角坐标系中,描出下列各点:A(4,3), B(-2,3),C(-4,-1),D(2,-2)。【设计意图】:例1的目的是给出点的位置,写出点的坐标。例2的目的是给出点的坐标,描出点。学完概念之后,马上对概念进行应用,达到巩固的目的。当时上课时这2道例题的解答都比较圆满,绝大部分学生都能顺利做出。
活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。
[设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。