方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
师生共同归纳法则2、异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。生5:这两天的库存量合计增加了2吨。(+3)+(-1)=+2 或(+8)+(-6)=+2师:会不会出现和为零的情况?提示:可以联系仓库进出货的具体情形。生6:如星期一仓库进货5吨,出货5吨,则库存量为零。(+5)+(-5)=0师生共同归纳法则3、互为相反数的两个数相加得零。师:你能用加法法则来解释法则3吗?生7:可用异号两数相加的法则。一般地还有:一个数同零相加,仍得这个数。小结:运算关键:先分类运算步骤:先确定符号,再计算绝对值做一做:(口答)确定下列各题中和的符号,并说明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 计算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:请四位学生板演,让学生批改并说明理由。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
1.会用计算器求平方根和立方根;(重点)2.运用计算器探究数字规律,提高推理能力.一、情境导入前面我们通过平方和立方运算求出一些特殊数的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究点一:利用计算器进行开方运算 用计算器求6+7的值.解:按键顺序为■6+7=SD,显示结果为:9.449489743.方法总结:当被开方数不是一个数时,输入时一定要按键.解本题时常出现的错误是:■6+7=SD,错的原因是被开方数是6,而不是6与7的和,这样在输入时,对“6+7”进行开方,使得计算的是6+7而不是6+7,从而导致错误.K探究点二:利用科学计算器比较数的大小利用计算器,比较下列各组数的大小:(1)2,35;(2)5+12,15+2.解:(1)按键顺序:■2=SD,显示结果为1.414213562.按键顺序:SHIFT■5=,显示结果为1.709975947.所以2<35.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
3.想一想在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?(3)坐标轴上点的坐标有什么特点?由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。第三环节学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。(第1题) (第2题)2.如右图,求出A,B,C,D,E,F的坐标。第四环节感悟与收获1.认识并能画出平面直角坐标系。2.在给定的直角坐标系中,由点的位置写出它的坐标。3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
8.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )A.4 B.5 C.6 D.7第四环节课堂小结1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)第五环节布置作业习题3.5 1,2,3四、 教学反思通过“坐标与轴对称”,经历图形坐标变化与图形的轴对称之间的关系的探索过程, 掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发学生对数学学习的好奇心与求知欲,学生能积极参与数学学习活动;积极交流合作,体验数学活动充满着探索与创造。教学中务必给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。事先一定要准备好坐标纸等,提高课堂效率。
解析:从各点的位置可以发现A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A2015在第二象限,纵坐标和横坐标互为相反数,所以A2015的坐标为(-504,504).故填(-504,504).方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.三、板书设计轴对称与坐标变化关于坐标轴对称作图——轴对称变换通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.
一、旧知回顾1、有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(3)互为相反数的两数相加得零。(4)一个数与零相加,仍得这个数。注意:一个有理数由符号和绝对值两部分组成,进行加法运算时,应注意确定和的符号和绝对值.
【类型三】 已知三边作三角形已知三条线段a、b、c,用尺规作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作线段BC=a;2.以点C为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧相交于点A;3.连接AC和AB,则△ABC即为所求作的三角形,如图所示.方法总结:已知三角形三边的长,根据全等三角形的判定“SSS”,知三角形的形状和大小也就确定了.作三角形相当于确定三角形三个顶点的位置.因此可先确定三角形的一条边(即两个顶点),再分别以这条边的两个端点为圆心,以已知线段长为半径画弧,两弧的交点即为另一个顶点.三、板书设计1.已知两边及其夹角作三角形2.已知两角及其夹边作三角形3.已知三边作三角形本节课学习了有关三角形的作图,主要包括两种基本作图:作一条线段等于已知线段,作一个角等于已知角.作图时,鼓励学生一边作图,一边用几何语言叙述作法,培养学生的动手能力、语言表达能力
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?
二、升格训练师:大文豪曹雪芹写《红楼梦》是“披阅十载,增删五次”,可见修改是写作获得成功的必然环节,很多文学名家对此也深有感触。这些古今中外的作家,都向我们推荐了一种修改文章的好方法——朗读修改法。结合你自己的写作经验,你觉得大声朗读可以发现习作中的哪些问题?预设 如有些词语听起来不顺耳,有些句子读起来不顺口,有些段落缺少过渡,或前后意思重复,有些地方表达不清楚,有些修辞手法的运用欠妥,有些标点的运用不规范等,这些问题都能够在朗读中发现。2.再改随笔。师:之前修改写景随笔,用的是默读修改法,这次换作朗读修改法,会不会有新的收获呢?请大家朗读病文,然后小组讨论:文中还有哪些用词不恰当、语句不连贯的地方,找出来并进行修改,使之文从字顺。(生朗读随笔,修改后交流讨论并展示)预设 (1)“有什么轻柔的东西拂到脸上,细细的”,可以把“轻柔的”改成叠词“柔柔的”,放到后面,和“细细的”并列,这样读起来音律感要好些。
本文的抒情语句虽然不多,但也很有特点。一是蕴含于叙述之中,如第2段开头“当余之从师也”,结尾“况才之过于余者乎”,在叙述中表露出浓厚的感慨、叹息意味;二是潜藏在议论中,如文章结尾“余之志也”“岂知予者哉”两句,在议论中表明自己的心志意向,有一唱三叹、低回婉转之致。【设计意图】对于具体的内容细节的分析,有助于学生理解表现手法、写作手法的概念。赏析文章的表现手法和写作手法有一定的难度,通过合作探究的方式,学生能互相帮助,加深理解。三、发表观点,个性表达1.作者家贫嗜学,乐以忘忧,在老师面前不敢出一言。谈谈你是怎样看待这种学习态度和从师尊师的方式的。预设 【示例】作者虽然家庭贫困,但依然好学,即使身处富贵的同窗之中,也不羡慕别人,而是以学习为乐,这种勤奋好学、坦然乐观的精神值得我们学习。面对老师时态度恭敬,这是我们作为学生应该做到的,但是学贵有疑,当我们有疑惑时应及时向老师提出,和老师共同商讨,这样才能不断进步。(引导学生用现代观念审视作品的思想内涵。可以各抒己见,不强求答案统一。)
预设 (1)“大道”可以理解为治理社会的最高准则。“大同”指儒家的理想社会或人类社会的最高阶段。“大道之行也”是指执政者施行“大道”,老百姓便可以生活在安定和平的大同社会。(2)天下为公;选贤与能,讲信修睦。(3)“大同”社会是以“五帝之世”的传闻为依据,经过加工提炼而后构想出来的一个理想社会的模式。意在建立一个合理的社会,以消除现实社会中的黑暗现象和不合理的地方。3.拓展延伸师:你认为这种理想社会在当时实现了吗?如何理解这种思想?(生交流讨论,师引导)预设 “谋闭而不兴,盗窃乱贼而不作”是一种和平安定的局面,是对“大同”社会的一个总结,这个理想在当时并没有实现,因为小生产的物质基础不足以支撑“大同”社会的运转,还有搞阴谋、盗窃财物和作乱等奸邪之事。这种理想在当时虽不能实现,但它具有积极意义,是我们的精神财富。
庄子是战国时期著名的思想家、哲学家和文学家。他是道家学派主要代表人物之一,他继承并发展了老子的思想,与老子并称“老庄”。《庄子》又名《南华经》,是道家经典著作之一。《庄子》主要反映了庄子的批判哲学、美学等,其内容丰富,博大精深,涉及哲学、人生、政治、社会、艺术、宇宙生成论等诸多方面。《庄子》是一部文学的典范著作。“道”是庄子思想的核心,“逍遥游”是庄子不满黑暗现实的羁绊而提出的一种生活方式与社会理想。庄子主张超然物外,绝对自由地生活在世界上,他认为生命的意义不在于庸俗地活着,而在于逍遥地神游,这些精神的遨游是绝对自由的,在庄子看来,自然是一种超凡脱俗的状态,一种妙不可言的境界。庄子的“逍遥游”是一种感性的生活方式,他告诉我们要去追求功利之外独立的生命价值,追求人生的真实自我。从当下来看,庄子追求的逍遥境界,是无法实现的主观唯心主义幻想,是一种乌托邦式的美好的臆想。
说教材本文是部编版八年级语文下册第四单元的一篇课文,也是一篇幽默风趣的演讲稿。文章介绍了王选先生一生的重要抉择和贡献,并将自己的一生的抉择与祖国的发展密切结合起来。说学情学生对王选先生有一定的了解,在介绍他一生重要抉择时学生更容易理解王选先生爱岗敬业,勤奋工作的精神并深受鼓舞。教学目标1、识记王选极其重大贡献2、识记课文主要词语3、通读全文,了解王选一生中经历的几次重大选择。4、学习王选先生专注于科研、无私奉献的精神教学重点王选一生中经历的几次重大选择教学难点从这几次选择中分析王选先生的精神教学方法研读法、讨论法
指导思想:《应有格物致知精神》是义务教育课程标准实验教科书九年级上册第四单元第二课,本单元编排的课文全是议论文,除了让学生掌握议论文的一些常识,培养阅读议论文的兴趣外,更要明白教材目标。“格物致知”是一篇漫谈式议论文,除让学生掌握基本知识和技能外,更重要的是让学生热爱科学、勤于探索、勇于创新,培养学生有服务人类,回报于社会的高尚品格,树立正确的人生观念。本文是丁肇中在1991年10月,在北京人民大会堂举行的“情系中华”大会上演讲的一篇演说词的一部分,是一篇漫谈式的议论文。作者针对中国学生的实际情况,结合传统的中国教育状况,分析了实验精神在科学上的重要性,并联系现实和自己的学习经验,提出论点:我们应该有真正的格物致知精神,即需要培养实验的精神,不管研究自然科学、人文科学还是在个人行动上,我们都要保留一个怀疑求真的态度,要靠实践来发现事物的真相。本文主要运用摆事实讲道理的论证方法,说理透彻,语言准确。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。