2、通过动手操作,发展幼儿空间想象能力和创造能力。 3、培养幼儿对数学活动的兴趣。准备: 教师用具:大的圆形、正方形和三角形各一个,小箱子一个(里面放图形若干,纸做的小鸟一只), 幼儿学具:每人一套几何图形(有三角形、正方形、长方形、梯形、半圆形,圆形等若干)过程:一、引出课题,激起兴趣 今天我带来了几位图形宝宝,这些图形宝宝可真有趣,它们会变魔术,变成另外一个图形宝宝呢。
2.能仔细观察图形,并积极参与讨论。 3.听懂操作要求,并按要求操作。 (二)活动准备: 1.幼儿认识多种图形 2.各种颜色、形状、大小的图形若干、参考图、图形特征标记、空白记录表一张 3.幼儿用书(三)活动过程: 1、彩色图形来了…… (1)以游戏情境引起幼儿的兴趣。 “今天有许多彩色图形要去游乐场玩游戏,瞧,它们来了……” (2)出示各种形状、大小不一的彩色图形,引导幼儿说说它们的形状、颜色、大小特征。 (3)出示颜色、形状、大小标记让幼儿认一认。
二、活动准备 画有“〈”“〉”符号卡片两张、1—10数字卡一套、苹果卡片三张、桃子卡片两张、粉笔三支、铅笔一支、练习题每人三张。 三、活动过程 (一) 引出主题,认识大于号 “>” 和小于号 “<”。 1. 教师边出示 “>” 和 “<” 的卡片,边说:“今天老师带来两个好伙伴给你们认识,你们认识他们吗?” 2. 教师出示大于号 “>” (1) 教师:它叫大于号,开口向左,跟着老师念:大于号,开口向着大数笑。 (2) 教师举例,在黑板上写出3 >1,读作三大于一,跟着老师再念一遍,大于号,开口向着大数笑。 3. 教师出示小于号 “<” (1) 教师:它叫小于号,开口向右,跟着老师念:小于号,尾巴对着小数翘。 (2) 教师举例:在黑板上写出2<4,读作二小于四,跟着老师再念一遍,小于号,尾巴对着小数翘。
(二)活动准备: 1.教具:抽奖箱,抽奖券。 2.学具:幼儿奖卡、笑脸、作业纸、白纸条、勾线笔。 3.知识经验:抽奖。 (三)活动过程: 1、初步比较图形的不同。 师:(出示各种图形):“今天,老师给你们带来了许多奖卷。看,它们一样吗?那些地方不一样?” 小结:“对,它们大小不同,形状也不同。” 每一个小朋友选一个你喜欢的奖券吧。看一看,你的奖券是什么样的? 2、抽奖游戏,分析图形特征。 (1)抽三等奖,分析单一特征。 师:“这是抽奖箱,现在要开奖啦。先开三等奖。我来抽,会是谁中奖呢?(抽长方形) “什么中奖啦?你怎么知道的?“对,这是长方形标记。表示所有的长方形中奖。 恭喜你们。送给你们一个笑脸娃娃。 还会有谁中奖呢?你们闭上眼睛,我抽出来看。等你们挣开眼,看到自己中奖的就站起来。
【活动准备】 1、小兔手偶一个、魔术袋一个。 2、不同大小、不同颜色的圆形、三角形、正方形若干。 3、纸制小路(上面镂刻不同形状、不同大小、不同颜色的图形)。 【活动过程】 1、创设情境,引起幼儿参与活动的兴趣。 森林里,小兔的房子被大风吹倒了,我们一起帮它造一座房子吧。 2、帮小兔造房子,复习几何图形。 引导幼儿从魔术袋里摸出不同图形,并用摸出的几何图形给小兔造房子,复习圆形、三角形、正方形。
2、通过情景游戏等活动,让幼儿初步感知图形之间的转换关系,并能想办法解决问题。 3、培养幼儿思维的灵活性,发展幼儿动手能力,激发幼儿学习数学的欲望。活动准备: 1、学会了各种图形的特征。 2、自制的“小路”,上面镂刻大小不同的图形“土坑”,将镂刻下来的图形作成铺路的“石头”。小篮同幼儿人数。 3、圆形、三角形、长方形、正方形的图形标记,音乐。 活动过程: 一、情景导入“捡石头”,激发幼儿活动兴趣。 1、“小朋友,今天的天气真好,我们一起去郊外捡石头!”(随音乐进入活动室) 2、教师提出操作要求:“快看!有那么多五彩缤纷的小石头,大家可以挑自己喜欢的捡。”
[活动准备] 1、图片一幅、纸制小路(上面镂刻不同形状、不同大小的图形) 2、小白兔头饰一个,内装有形状不同的几何图形多个的“魔术箱”一个 [教学过程] 一、以故事形式引出主题 1、讲故事引起幼儿的兴趣 师:小朋友,昨天小白兔打电话给老师,它对老师说:“昨天,森林里刮起了大风,把我的房子都给吹破了(呜…)你能不能帮我造一间新房子呢?”于是,老师就连夜给小白兔造了一间新房子。小朋友,你们看,这新房子漂亮吗? 2 、出示图片,提问: 师:你们看,老师把房顶盖成什么形状的? 小:三角形 师:房身呢? 小:正方形 师:门又是什么形状呢? 小:圆形 引导幼儿说出三角形、正方形和圆形
【教学目标】知识与技能目标:掌握对数函数的图像及性质;过程与方法目标:通过图像特征的观察,理解对数函数的性质,并从中体会从具体到一般及数形结合的方法;情感态度与价值观目标:在教学活动中培养学生的学习兴趣,感受数学知识的应用价值,体验知识之间的内在逻辑之美。【教学重点】对数函数的图像及性质。【教学难点】对数函数性质与应用。
二、对数函数的概念1. 计算对数的值 N1248x 思路(引入对数的概念):让学生依次计算、、、、、、,体会每一个真数都能找到唯一一个对数与之对应,这就形成了一个函数,我们称这个函数为对数函数。
二、生活习惯: 幼儿从小就要培养具有良好而有规律的生活习惯,启导幼儿学会洗手洗脸,并讲究卫生,爱干净,每天早睡早起,天天上学不迟 到不早退,帮助老师和家长做一些力所能及的事情。 三、室内课堂: 、教育管理培养幼儿独立思考、思维和自理能力,让幼儿多听多讲,多观察学习新词汇,丰富新词汇,发展幼儿的口语表达能 力。在体育、美术、手工等方面,让幼儿多模仿老师,养成幼儿爱动脑的学习习惯。同时指导幼儿亲自体验,促进幼儿智力的全 面发展。 2、根据幼儿的年龄特点,自身发展的能力和兴趣,制定各类不同的每一堂课,授课中多发现幼儿的闪光点,能让幼儿在各类课 堂中给予自我表达机会、观察的机会、遵守规则的机会、亲自体验、实践和探索的机会,能使幼儿对各类事物感到好奇,并喜欢 做每堂课中的游戏,以激发幼儿的求知欲。 四、户外课堂 教师在课堂教学中应注意静与动的活动配合,善于利用环境设施(幼儿头饰、各种小动物),并根据不同的环境,精心设计不同 的户外活动课。但课堂要切合幼儿的能力,采用灵活的方法,使整个课堂教师教得轻松,幼儿学得开心。
2.激发幼儿参与数活动的兴趣,培养幼儿积极思维的能力。 活动准备:1、一定数量的卡通玩具。1—10的数字卡片若干。 2.自制小奖品和金钥匙若干。 活动过程:1、介绍“中奖游戏”。 (1)提问:“什么叫中奖?”老师解释,帮助卡通宝宝找朋友。如果帮它们都 找到了朋友(指都找到了一对一对卡通玩具),就算中奖,能得到奖品。 如果其中有一个卡通宝宝找不到朋友,则不能得到奖品,也就是没有中奖。 (2)讲解游戏规则。 每人请出若干数量卡通宝宝来做游戏。分成弟弟妹妹两队,进行比赛。提示幼儿可用已经玩过的非正式活动中“圈一圈”游戏的方法,来玩中奖游戏。 2.第一轮游戏将幼儿分成两队进行,理解双数和单数的意义。 (1)第一轮比赛结束后,引导幼儿讨论:他们能不能中奖?为什么?加深对游戏意义的理解。即:帮助卡通宝宝找到朋友,就能中奖,反之则不行。 (2)第二轮比赛后,引导幼儿讨论:为什么弟弟队(或妹妹队)总是能中奖?让幼儿知道游戏中“请多少数量的卡通宝宝”是能否中奖的关键。 小结归纳:遇到2、4、6、8、10的数量的卡通宝宝都能找到朋友,也就都中奖。遇到1、3、5、7、9的数量的卡通宝宝都会剩下一个找不到朋友,所以不能中奖。 (3)认识2、4、6、8、10是双数;1、3、5、7、9是单数。
活动目标: 1、通过创设情境、游戏化的教学,让幼儿在操作中理解并区分10以内的单双数; 2、培养幼儿从身边事物中发现单双数的能力; 3、激发幼儿对单双数的兴趣,能积极主动地参与数学活动。活动准备: 2元超市场景、1——10的代用券,红色水彩笔每人一支、幼儿分组操作材料活动过程:一、情景导入,引起兴趣 瞧!我们已经来到了2元超市,你们来猜一猜,它为什么叫2元超市呢?二、在购物游戏中体验、感知单双数 1、教师讲解游戏规则。 数一数,你有几元钱?圈一圈,你能买几样东西? 2、幼儿进行购物游戏,提醒幼儿做一个文明小顾客。三、在交流与比较中理解单双数 1、讨论:你有几元钱?买了几样东西?还有钱多吗? 2、回收代用券:还剩一元的小朋友把代用券送到一边,都用完的送到另一边。 3、集体检验,解决问题:“1”该送哪边? 4、教师小结: ①像1、3、5、7、9这样两个两个地数,总会剩下一个的数叫单数;2、4、6、8、10这样都能凑成2个2个的数叫双数。 ②10以内有5个单数,也有5个双数。 ③单数挨着双数,双数挨着单数,它们手拉手,都是好朋友。
同学们,早上好:每年的6月26,是国际禁毒日。今年国际禁毒日的宣传主题是:“远离毒品 关爱未来”。当今世界,毒品似瘟疫在全球蔓延,吸毒者日见增多,造成的社会问题也日趋加重。为应对毒品对人类的危害,联合国于1987年决定将每年的6月 26日日定为“国际禁毒日”,以引起世界各国对毒品问题的重视,共同抵御毒品危害。毒品是鸦片、吗啡、海洛因、可卡因、大麻、杜冷丁等32种国际公约明令禁止的麻醉品与精神药物的统称,也包括近年来在美国等地流行起来的迷幻药。毒品的对人类的危害是十分恶劣的。我们都知道鸦片战争。清王朝官员抽鸦片,无心问政;士兵抽鸦片,无力作战;老百姓抽鸦片,无钱生活。当时整个中国,民不聊生,死气沉沉。今天,毒品还在危害着人类。毒品已经成为困扰社会生活最大的祸患,多少人因此失去了学习的机会、丧失了工作能力、出卖了自己的良心、背弃了家人与朋友、失去了生命、危害了社会!6月4日清晨6时许,上海XX区发生一件XX年国际禁毒日国旗下领导讲话蹊跷事,一辆轿车在行驶中发生事故后,轿车内一名女子下车后沿途奔跑,车内又紧随其后下来一名男子,手持凶器追砍女子。女子被砍后,男子继续狂奔,情绪激动的他一路挥舞凶器,砍向无辜路人。多人不幸“中招”,最后该男子突然倒地,不省人事。该男子疑涉嫌吸毒,警方已介入案件调查。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
学校认真根据强化安全意识,提升安全素养这一安全教育主题,紧密结合本校实际、结合学生认知特点,制定切实可行的安全主题教育活动方案,明确安全教育目标、组织领导机构、教育活动措施、实施方法步骤等,确保主题教育活动有人抓。围绕安全教育主题,认真分析学校目前安全工作现状,特别要针对防震、防火、校园伤害、拥挤踩踏、交通、溺水、用电等事故的薄弱环节、存在的突出问题和安全隐患进行一次全面的排查,使学校的安全教育落到实处。三、开展各种宣传工作。3月30日,学校利用升国旗仪式举行安全教育启动仪式,学校领导做了题为强化安全意识,提升安全素养的国旗下讲话,做好宣传教育发动工作,营造安全教育活动氛围。在开展安全教育日活动期间,学校结合自身实际,充分利用校园宣传栏、墙报、手抄报、班会活动等方式向学生进行安全宣传教育。各班出一期安全墙报,开一次以安全为主题的班会。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。