四、课堂小结今天我们一起研究了什么问题?板书课题:求一个数比另一个数多几的应用题解答这样的问题,应该怎样进行分析?在老师的提问下,学生回忆分析思路。最后,小结上课时男女学生小旗的情况,得出数目后问:你能根据今天学习的内容提出问题并列式计算吗?教学反思:求一个数比另一个数多几的应用题,本节课属于计算教学。传统的计算教学往往只注重算理、单一的算法及技能训练,比较枯燥。依据新的数学课程标准,在本节课的教学设计上,创设生动具体的教学情境,使学生在愉悦的情景中学习数学知识。鼓励学生独立思考、自主探索和合作交流。尊重学生的个体差异,满足多样化的学习需求。 在课堂过程中,还有小部分学生不能充分地展开自己的思维,得到有效的学习效果,让所有的学生基本都学会如何去展现自己的有效的学习方式,这是我的教学目标。
2.送信。实物投影仪演示反馈。(1)方法说明。你是怎么想的?(2)错误纠正。分层校对:做完的先互相批改,然后集体先校对丁当组题,再校对一休组题。重点讲评一休组题目。六、总结今天你有哪些收获?(1)退位减法要注意什么?不要忘记退位。(2)退位减法的方法。为学生提供学习材料,让学生通过活动联系生活实际学习新知,让学生感受到数学源于生活,用于生活;采用分层教学,整个学习过程都是学生在小组中合作研究、探索中完成的;然后通过多种形式的练习加以巩固;注重学习过程的开放;通过小组合作,培养学生善于发表自己的观点,会倾听同学的意见的能力。同时也培养学生学会提出问题、解决问题的能力。
[设计意图:巩固减法的意义,培养学生初步的思维能力。](2)组织学生自己先算一算,教师巡视,捕捉学生学习信息,纠正不良学习习惯。[设计意图:通过巡视,及时捕捉学生的学习信息,发现问题及时解决;把培养学生良好的计算习惯、审题习惯及检查习惯落到实处。](3)组织学生全班交流计算方法。组织学生在全班交流解决计算“32-2=”的方法,引导学生理解“32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”。如果学生用其他的方法来计算,只要正确,也要肯定。[设计意图:同前面一样,巩固数的组成,训练每一个学生“述说整十数加一位数相应减法的计算过程”,突破难点。]3.加减法对比组织学生比较“30+2=32”和“32-2=30”,并说一说有什么发现,使学生认识到“3个十和2个一组成32,所以30加2等于32;反过来,32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”[设计意图:强化加减法意义的联系,培养学生初步的思维能力。]
知识和技能 1.了解人类活动对生物圈影响的几个方面的实例。 2.掌握环境污染的产生及危害。 3.举例说明人类对生物圈中资源的合理利用。 过程与方法 1.能初步学会收集资料,养成良好的学习习惯,能够运用所学知识、技能分析和解决一些身边的生物学问题的能力。 2.培养学生初步具有近一步获取课本以外的生物学信息的能力。 情感、态度与价值观 1.让学生认识到环境保护的重要性,能够以科学的态度去认识生命世界,认同人类活动对生物圈的影响,形成环境保护意识,并使这种意识转变成真正的行动,培养学生保护环境的意识,增强爱国主义思想1.认同人类活动对生物圈的影响,形成环境保护意识 2.做到从实际行动出发保护环境1.采取让学生收集资料,整理资料,解疑
2、体验合作装饰图案的乐趣和成功的喜悦。 准备:小蜘蛛图片,每组一张大白纸,纸中间画一只蜘蛛 过程: 一、激发兴趣,认识各种线条和图形 1、出示蜘蛛图片:小朋友,看,谁来了?这是一只灵巧的、爱漂亮的小蜘蛛,那它会干什么呢?那网有什么用呢? 2、今天这只小蜘蛛真的很饿了,它想来吐丝织网捉虫了,老师示范画蜘蛛网。 3、小朋友,小蜘蛛除了会吐出直线,还会吐出什么样的线条、图形来呢? 请小朋友把自己想到的都画在小蜘蛛旁边,一起欣赏。 二、欣赏多种线条和图形组合变化的奇妙效果 今天我们的小蜘蛛可高兴了。因为它是一只非常爱漂亮的小蜘蛛,它看到小朋友画了这么多的线条和图形,可喜欢了。它想要把你们画的线条和图形都织进它的蜘蛛网里,那怎么织呢?你们有谁也愿意来帮帮小蜘蛛呢?(请个别幼儿示范) 今天老师把别的小蜘蛛织的网也带来了,请小朋友欣赏一下,你觉得哪些网最漂亮?为什么?
活动目标: 1、在认识几何图形的基础上,通过联想添画成简单的物体,并变现其主要特征。 2、能够发挥想象,创造性的进行图形添画活动,发展创造力。 3、愿意参与图形添画活动,在活动中体验创造的快乐。活动准备: 1、每组一小筐六种不同的几何图形(每种图形若干个)、勾线笔、蜡笔等。 2、画有不同图形(大小不一)的作业纸若干张,拼图添画的范例。活动过程: 一:巩固几何图形 1、师:今天老师带来了几个图形,我们一起来看看,提问:都有什么图形? 2、师:哟,小朋友真聪明,都认识了这些图形。你们知道吗,这些图形可神奇了,他们还会变魔术呢。
2、 培养幼儿主动学习、创造思考、解决问题的能力。3、 能和同伴友好合作,共同协商完成操作。4、 培养幼儿良好的操作习惯。活动重点和难点:发展幼儿组合构建的能力。活动准备:教具 色块卡、无色鱼五条、大操作卡两张、 学具 每人红黄蓝方块各五块、操作卡两张活动过程:一、送方块宝宝给小朋友玩,让幼儿尝试一下组合构建的乐趣。(培养幼儿主动学习的能力)教:快慢轻重的拍手游戏集中孩子的注意力,活跃课堂气氛。孩子们,你们好,今天陈老师带来了许多方块宝宝,这些方块宝宝可有趣了,瞧,我把它一个一个的接起来,就可以变成一个个图形宝宝呢!看我变成这个图形,再接一块,我又变成了另外的一图形。孩子们,你们也来试试吧,看谁变得又多又快。(每桌发一篮方块宝宝)观察幼儿的构建情况,询问幼儿所构建的物品的名称,向全班幼儿展示构建新颖的作品。
【研讨练习】题一:阅读下边的应对案例,简要说明这些名人采用了什么应对技巧。1.孔融十岁的时候就表现出超乎寻常的聪明才智,得到人们的赞许。有一个叫陈的官员却当众不以为然地说:“小时了了(聪明),大未必佳。”孔融立即回应道:“想君小时,必当了了。”2.一名英国女士非常喜欢钱钟书的小说《围城》,于是打电话给钱钟书请求见面。钱钟书对她说:“假如你吃了个鸡蛋觉得不错,何必认识那下蛋的母鸡呢?”3.一个年轻的画家拜访德国著名的画家阿道夫·门采尔,向他诉苦说:“我真不明白,为什么我画一幅画只用一会儿工夫,可卖出去要整整一年。”“请倒过来试试吧,”门采尔认真地说,“要是你花一年的工夫去画它,那么只用一天就准能卖掉它。”________________________________________________________________________________________________________________________________________参考答案:1.针锋相对2.归谬3.自嘲题二:在我们的生活当中,经常会碰到别人有意的嘲讽。阅读下面的情境,机智应对。
一、自觉依法纳税(二)我国税收“取之于民,用之于民” 1、税收的含义与基本特征 【学生活动】学生思考后回答。 【教师活动】税收是国家为实现其职能,凭借其政治权力,依法无偿地取得财政收入的基本形式。 【教师活动】税收具有强制性、无偿性和固定性的基本特征。[1]强制性:不管你愿意还是不愿意,都必须交税。[2]无偿性:交了税,没有补偿,更不会返还。[3]固定性:征税是有标准的,不是无止境的,按标准收到一定数量即算完成纳税。 2、税收的性质 【教师活动】展示多媒体图片,观察税收性质是什么? 【学生活动】分析图片,税收的性质。 【教师活动】每个人都与税收紧密地联系在一起,我们天天享受到的公共物品,无不有赖于税收。接受教育要有学校,看病要有医院,出行要有道路,保障国家安全要有国防,防洪、发电要有水利工程,这些都要依靠国家的税收来为公众提供公共服务。 【教师活动】播放国家免费为新冠肺炎患者治疗的视频。 【教师活动】劳动人民是税收的最终受益者,我国的税收是取之于民、用之于民的新型税收。
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
一、导入新课被美国《Inc.》杂志赞誉为“他的创意活力无限”的罗迦·费·因格,是创意思考顾问公司的创立人与总裁,该公司专门提供激发创意与革新的方法。他为全球各大企业提供演讲与专业课程,这些企业包括可口可乐、迪士尼、英特尔、MTV、微软公司、苹果电脑等。今天我们就一起来聆听他对于创意的思考。二、教学新课目标导学一:把握论点,理清论证思路1.默读课文,找出文中主要代表作者观点的句子。明确:(1)不满足于一个答案,不放弃探求,这一点非常重要。(2)创造性的思维,必须有探求新事物并为此而活用知识的态度和意识。在此基础上,持之以恒地进行各种尝试。(3)区分是否拥有创造力的人,主要根据之一是,拥有创造力的人留意自己细小的想法。2.请你结合上述代表作者观点的句子,用自己的语言简要概括本文的论点。明确:(1)拥有创造性思维十分重要;(2)积累知识并运用知识是创造性思维的关键要素;(3)人人都有创造性思维,发挥创造性思维须留意自己的细小想法。
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
《树之歌》是统编版二年级上册第二单元的一篇韵文识字教学课文。儿童熟悉的拍手游戏为活动形式,串起了八种动物的生活场景。儿歌共十个小节,开头与结尾三个小节相互呼应,中间的六个小节分别介绍了羽毛艳丽的孔雀和锦鸡,展翅翱翔的雄鹰,成群的大雁,丛林中的猛虎,啼叫的黄鹂和百灵鸟,憨态可掬的大熊猫。儿歌主要运用拟人手法,使动物形象更加亲切可爱,富有童趣。在教学时,可侧重培养学生的诵读能力,在读中领悟儿歌大意,体会儿歌蕴含的思想感情,使学生受到情感的熏陶。运用多种形象直观的教学手段,创设丰富多彩的教学情景,采用多种方法科学地识记绳生字,提高学生的认字效率和识字兴趣。 1.认识“世、界”等14个生字,会写“歌、写”等10个生字,了解“隹”“鸟”偏旁表义的特点。掌握本课的相关词语。2.正确、流利地朗读儿歌,读出节奏感并背诵。3.感受动物生活的自由、快乐,培养学生保护动物的意识。 1.教学重点:学会本课生字,了解“隹”“鸟”偏旁表义的特点。正确、流利地朗读儿歌,读出节奏感并背诵。2.教学难点:了解“隹、鸟”等偏旁表义的特点。感受动物生活的自由、快乐,培养学生保护动物的意识。 2课时
我是中国人民的儿子。我深情地爱着我的祖国和人民。爱国主义是千百年来巩固与发展起来的对自己的祖国的一种最深厚的感情。 列宁为什么我的眼里常含着泪水?因为我对这土地爱得深沉! 艾青【第四环节:演唱爱国歌曲】主持人:下面请几位同学为我们展示自己的精彩才艺。演唱一首爱国主题歌曲,让我们在激荡人心的歌声中结束我们这次的主题班会。演唱曲目《爱我中华》主持人:在美妙的歌声中,本次主题班会到此结束。活动小结:通过这次主题班会,激发了学生的爱国情感和民族自豪感,也更加让同学们体会到祖国的发展与强大与同学们是息息相关的,使同学们体会到了肩上所承担的重任让他们明白为什么爱国以及作为学生该如何爱国,将主题班会内容内化到他们的思想中,落实到他们的行动中去。
1、初步认识深海里的各种怪鱼,大胆地发挥想象,具有初步的想象力。 2、愿意动手绘画出自己想象中的怪鱼。 3、体验与同伴一起探索的乐趣。活动准备: 海底世界(课件),各种各样的怪鱼卡片,彩色笔、白纸。活动过程: 一、激发兴趣 1、教师出示一条怪鱼,引发兴趣。 2、引导幼儿说出这条怪鱼怪在哪里。 二、交流讨论 1、带领幼儿到海底世界寻找出各种各样的怪鱼。(观看课件)2、幼儿自由找怪鱼并说出找到的怪鱼怪在哪? 3、教师注意引导幼儿观察怪鱼的外型特征。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。