
本单元是八年级上册教材的第三单元,在逻辑结构上起着承上启下的作用。从 学生发展的需要和当前学生思想现状出发,基于学生对责任、奉献等的理解和认知 状况,对其进行正确价值观的引导,有利于帮助学生更加主动地适应社会,实现个 人的全面发展。第六课“责任与角色同在”由引言和两框内容组成。引言概述了责任与角色的 关系以及承担责任对社会、民族和国家的意义,具有统领全课的作用。第一框“我 对谁负责,谁对我负责” ,主要是帮助学生了解什么是责任、责任的来源有哪些; 懂得在社会生活的舞台上,每个人都扮演着不同的角色,承担相应的责任;知道每 个人要对自己负责,也要对他人负责,同时其他人也在对自己负责。正是由于我们 每个人各负其责,个人才能获得充分发展,社会才能获得全面进步。第二框“做负 责任的人” ,主要是帮助学生认识到承担责任意味着要付出一定的代价,也会获得 回报,要学会作出合理的选择,并对自己的选择负责;对不是自愿选择但又必须做 的事要自觉承担、尽力做好,努力向履行社会责任却不言代价与回报的人学习。

2.内容内在逻辑本单元是人教八年级上册道德与法治学科第三单元的内容,在逻辑结构上起 着承上启下的作用,本单元包括两课四框内容。第六课“责任与角色同在”,两框分别是“我对谁负责 谁对我负责”、“做 负责任的人”:第一框“我对谁负责 谁对我负责”旨在引导学生学习社会责任,培养学生 责任意识,使学生认识到责任与角色同在,对自己的责任有明确的认识,增强责 任意识;能够随着角色的变换调整决策行为,能够对自己、对社会承担责任的人 心怀感激之情。第二框“做负责任的人”旨在让学生认识到承担责任意味着回报也意味着代价,要学会承担责任,更要为自己的选择负责,崇敬那些不言代价与回报且无私 奉献的人,努力做一个负责任的公民。第七课“积极奉献社会”,两框分别是“关爱他人”、“服务社会”。

A.大力深化大数据、人工智能等研发应用B.高举新时代改革开放旗帜,继续全面深化改革、全面扩大开放C.加强国际交流与合作,培育竞争新优势D.建立更加公平、更可持续的社会保障制度 2、发展是解决我国一切问题的基础和关键。全面建设社会主义现代化国家,必须始终抓好发展 这个基础和关键。中国积极谋求发展,就必须 ( )①引领、主导全球规则的制定②要加快构建以国内大循环为主体、国内国际双循环相互促进的新发展格局③掌握国际竞争主动权④积极寻求新的经济增长点A. ①②③ B.①②④ C.①③④ D.②③④3、“中国制造2025”构想的提出,对于中国传统制造业的转型升级影响深远。新一代信息技术 和传统工业的深度融合已成为中国新一轮制造发展制高点,我们要把智能制造作为中国制造未 来的主攻方向,实现由“中国制造”向“中国创造”“中国智造”转型。这有利于 ( )①促进我国经济实现由实体经济向虚拟经济转变②通过新技术将传统产业打造为高新技术产业③推动传统产业优化升级,从而进一步提升我国在全球分工中的地位④催生新兴产业,形成新的经济增长点

(四) 作业分析与设计意图这是一项基于素质教育导向的整体式课时作业设计,结合信息技术下的思政课与信息 技术的深度有效融合,不仅完成了培育学生课程核心素养提高政治认同的目标,而且有效 的激发了学生的学习兴趣。作业以学生的“微型讨论会”为主要情境,设置了三项任务,层层 递进,螺旋式上升。作业以填写“活动记录”的形式呈现。教师从“掌握必备知识, 理论联系实 际 ”“培养核心素养,提高政治认同”等 5 个维度对作业进行评价,以“优秀”“良好” “合格”三个等级呈现。学生通过“微型讨论会”的方式,畅谈自己对中国在国际社会中的 地位和作用及相关外交政策的了解,通过该作业设计,教师可以引导学生关注国家和世界 局势,树立正确的人生观,世界观和价值观。 以增强学生的政治认同和责任意识。

8. 2022 年,俄乌冲突以来,美方不断泛化国家安全概念,滥用出口管制措施, 多次以所谓“人权”等为由,对中国企业无理打压,严重破坏国际经贸规则。 同时美国不顾中方多次警告,将航母驶入南海进行挑衅,美国国会操弄“台湾地图牌” 。面对美方的无端打压和干涉,我国应该 ( )A.谦让机遇,合作共赢,与美国共发展B.抓住机遇,迎接挑战,积极谋求发展C.集中力量,增强实力,掌控世界趋势D.主动迎击,不畏强权,巩固霸主地位9. 中华诗词浓缩了中华文化的精华,经过岁月的沉淀仍然闪烁着时代的光芒。 从下列经典诗句中得到的启示,你认为不正确的是 ( )A.“万物并育而不相害,道并行而不相悖”—在国际交往中我国要坚持合作、共赢的理念,做到互信互利 B.“国虽大,好战必亡;天下虽平,忘战必亡”— 中国要屹立于世界民族之林,必须通过战争树立国际地位C.“天与不取,反受其咎;时至不行,反受其殃”—机遇稍纵即逝,我们要抓住机遇,勇于创新,追求发展D.“同心掬得满庭芳”—各族人民要铸牢中华民族共同体意识,手足相亲、守望相助10.从漫画“新四大发明”中,下列认识和理解正确的有 ( )①我们要培育壮大经济发展新动能②我国把提升发展质量放在首位③中国决定着世界经济发展的趋势④中国与世界各国共享发展成果

大力推评选树先进典型,充分发挥先进示范带动作用。公司以“最美员工”评选、“*力量”先进典型网上集中宣传活动为载体,畅通了一线职工评先树优的通道,一大批“一线英雄”“草根明星”纷纷从幕后走向舞台,成为干部职工竞相学习的标杆和榜样。离休干部王建林被中央组织部评为“全国离退休干部先进个人”,董矿分公司刘晓宁获得“煤炭行业技能大师”荣誉称号,退休干部赵伯壁荣获陕西省“最美劳动者”提名奖,驻村扶贫干部赵李强被省委组织部和陕西省扶贫开发办公室评为省级优秀等次驻村队员,救护大队殷书华被授予“陕西青年五四奖章”,山阳煤矿公司李磊被陕煤集团评为20**年度“最美员工”,董矿分公司张蕾荣获陕煤集团“十大杰出巾帼标兵”。同时,公司对在敬业奉献、助人为乐、孝老爱亲等方面涌现出的陈世清、孟庆龙、王湘东等10名“最美员工”进行了表彰奖励,大力营造崇尚先进、学习先进、争当先进的浓厚氛围,激励全公司干部职工勤勉干事、担当作为,为推动*高质量发展再作新贡献。

一、活动目标:1.感受大自然的奇景,了解油画棒和水粉颜料一起画画的新玩法。2.尝试用简单的线条、图形大胆的表现自己的想象,并用油水分离的方法展现出来。3.在想象、创作、展现过程中,体验美术的乐趣。二、活动准备:物质准备:PPT《旅行》,音乐《飞舞的芬多精》一段,已调好的各种颜色的水粉颜料,报纸若干,刷子、白色油画棒、素描纸人手一份已有的知识经验准备:幼儿国庆节去旅行的所见所闻 三、活动过程1.回忆假期的旅行,引起幼儿的兴趣师:小朋友们,国庆节放假有没有去旅行啊!我请小朋友来说说你去哪里旅行了,看到了哪些美丽的景色,哪些好玩的的东西?(请个别幼儿举手回答)(评析:引导幼儿回忆已有了经验,感受旅行的乐趣,激发幼儿的兴趣。) 2、欣赏PPT,感受眼睛旅行看到的美丽,奇特的景色师:今天,老师也要带你们去旅行,不过是带你们的眼睛去旅行,所以小朋友们的眼睛要准备好了,紧紧跟着我,好朋友机器猫带着我们一起去。老师和幼儿一起欣赏,并以“你看到了什么”让孩子边看边自由说说,亦可适当的提醒。(评析:课件中孩子们欣赏到了很多大自然的奇景,有太空,海洋,各种各样的奇异山水风景,梵高的《星月夜》,世界奇观等,从各个方面丰富了幼儿的科学知识,同时在一些事物的图形上也有一定的认识,如月亮的圆,海星的五角星形状,金字塔的三角形等。这在视觉感官上给了幼儿一些初步的印象,为下面的创作做铺垫。)

目标: 1.引导幼儿学习欣赏精美陶艺作品,感受陶艺的魅力。 2.以局部展示陶艺品的方式,拓展幼儿的想象力。 3.培养幼儿对陶文化的热爱。准备:陶泥 陶艺课件 陶艺实物 陶艺工具若干 背景音乐 过程: 一、幼儿听音乐入活动室。 二、教师逐一出示课件,幼儿欣赏并进行发散性思考。 1、出示课件一 小朋友们,你们看这像什么?(幼儿自由回答) 2、.出示课件二 现在又像什么了呢?(幼儿自由回答) 3、出示课件三 现在有变成什么了呢?(幼儿自由回答) 它是装饰在什么物体上的呢?(陶罐上的) 那么它会有什么样的罐口呢?是罐脖子长长的;大大的;还是小小的呢? 教师小结:哦,原来陶罐上还可以装饰这么漂亮的花纹啊!

2、体会合作游戏的快乐。3、通过玩轮胎发展幼儿的创造性及扩散性思维。二、活动准备:1、自行车轮胎每人一个。(有大小)2、课前听过《龟兔赛跑》的故事。三、活动过程:1、火车律动进场。(1)幼儿用轮胎一个套一个,开火车进入活动室。(2)自编轮胎操。2、通过轮胎练习单脚跳跃。(1)通过故事《龟兔赛跑》引起幼儿练习单脚跳的兴趣。我们都听过《龟兔赛跑》的故事,兔子和乌龟赛跑谁得了第一?兔子很后悔在半上睡觉,决定和乌龟在比赛一次,它们都在为比赛积极的准备着,我们也来学学兔子和乌龟的本领,也象它们来比试比试.

演讲稿频道《国旗下的讲话演讲稿:遵规守纪 做文明乐安人》,希望大家喜欢。各位领导老师同学大家早上好:冬天的早晨是寒冷的,但是每周一早晨同学们都会排着整齐的队伍,喊着响亮的口号站在国旗下举行庄严的升国旗仪式。为什么?答难只有两个字---纪律。俗话说;没有纪律不成方圆。一个社会,一个团体,只有在良好的纪律维持下,才会逐渐的走向成熟。今天我要和同学们说遵守纪律做文明乐安人。《中小学生守则》和《中学生日常行为规范》已经给了我们明确的目标:自尊自爱,注重仪表,真诚友爱,礼貌待人,遵规守纪,勤奋学习,勤劳俭朴,孝敬父母。我们乐安实验学校的各项校规、校纪和这些守则规范是完全一致的。比如说,学校有明确要求:穿着得体大方,待人谦虚礼貌、言行文明适度等等。这些说起来简单,但做起来可就不那么容易了。有些同学总是怀着侥幸心理,认为偶尔违反一两条纪律没什么关系。

尊敬老师、亲爱的同学们,大家好!今天我演讲的题目是《助人是快乐之本》我曾经看过这样一个故事,一位小女孩去医院探望哥哥时捎上了一朵鲜花。隔壁床的一位病人看见了也希望拥有这么一朵漂亮的花。于是,小女孩每次去探病都不忘为这位陌生人也带上一朵花。后来,这位病人为了让幸福散播开去,在医院旁边开了一个小店,让经过他小店去探病的人也带上一朵鲜花。结果医院里每一个角落都充满着欢乐。在困境中的人,伤心的人,拥有一朵花,感觉就像拥有了整个春天。我们只要为他们献出一片暖暖的关爱,那么,我们就会为他们营造了一个幸福的天堂。在我们生活中,我们都喜欢被别人关心的感觉,我们都希望得到别人的支持和理解。

同学们,你们知道本周四是什么节日吗?对,感恩节!在西方国家,每年11月的最后一个星期四就是“感恩节”,在感恩节那天,人们都要欢聚一堂,举行各种庆祝活动,感谢、颂扬在过去一年里帮助过自己的人,并且尽可能去帮助他人。徐嘉意,上次你跳绳满100个mISSLU奖励你一个橘子,你马上说留给妈妈吃,说明你是一个懂得感恩的孩子,下面请你来说说你是怎么感恩长辈的。一(2)班徐xx:尊敬的老师、亲爱的同学们,大家早上好:在西方,每逢感恩节,人们会团聚在一起,感谢帮助过自己的人。人们还会做好事,去帮助身边有困难的人。今年的感恩节,我要感谢我的长辈。回家帮爷爷奶奶捶捶背,敲敲腿,感谢他们对我的照顾。给爸爸妈妈一个热情的拥抱,感谢他们的养育之恩。徐嘉如,你有什么好主意?

敬爱的老师、叔叔阿姨们: 大家晚上好!(行少先队礼)、。 我是XX班的班长XX。感谢班主任马老师给我这个机会,让我和叔叔阿姨谈谈我的学习方法、读书习惯等等,我担心总结不好,也只能恭敬不如从命。这是我第一次在大人面前正式发言,我担心讲得不好。我爸爸说,只要我说得明白,说话的声音能让叔叔阿姨听得清楚,就算完成了任务,这个信心我有的;如果叔叔阿姨听完之后,回家责骂我的同学你们的孩子,那就是我的罪过! 我要声明两点:一、我今天讲的有不少夸大其词的地方,很多事情我自己也没有做好;二、不要拿自己的孩子跟别人的孩子比较,有问题找解决方法,特别是从家长自己身上找源头,这是我爸爸补充的。 言归正传! 第一:要有一个好的学习环境和学习习惯。我家里有5000多本书,一回到家中就会闻到一股清淡的书香,有时国学机里还会播放着古典音乐或国学诗词文章的朗诵;我家里还有过两只鸟,真是鸟语书香,我仿佛被带入了仙境,容易静下心来读书学习。 白天听课时我会边听边记笔记,就算有些听不懂,我会问老师或回到家把上课笔记好好研究一下,或和爸爸妈妈探讨一下,或网络上查查资料,直到弄懂为止。放学回家,我会先把学过的知识点巩固一遍,然后再做作业。到了晚上,再用放电影法把白天学过知识在脑海里回顾一遍,记忆犹新,温故而知新。

【教学重点】1.利用农业区位因素分析的方法,学习水稻种植业和商品谷物农业的特点;2.对比水稻种植业和商品谷物农业两种农业生产地域类型,理解在农业地域类型形成的过程中,各个农业区位因素对其发展的影响。【教学难点】1.学习农业区位因素分析的方法,分析形成农业地域类型的主导因素;2.结合文字资料与图示资料的阅读,初步掌握提取地理信息的基本方法。【教学方法】自主探究与讲议结合【教学课时】1课时【教学过程】(导入新课)同学们,通过前面一节课的学习,我们已经树立了农业区位因素的基本理论,并且有了农业地域类型的一些基本认识,学习了种植业和畜牧业兼有的澳大利亚的混合农业,这一节我们继续学习两种以种 植业为主的农业地域类型——季风水田农业和商品谷物农业。

反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。