以下是《国旗下的讲话演讲稿:我爱祖国母亲》的文章,供大家参考国旗下的讲话演讲稿:我爱祖国母亲亲爱的老师、同学们:你们好!今天我演讲的题目是“我爱祖国”。“五十六个星座五十六枝花,五十六组兄弟姐妹是一家,五十六种语言汇成一句话,爱我中华爱我中华爱我中华……”是啊!我们离不开祖国。为什么人们总是把祖国比作母亲?有人说:“祖国用她那江河的乳汁喂养了我们。”有人说:“祖国用她那宽广的胸怀抱大了我们。”这当然都是对的。因为无论其他的什么词汇,都表达不出我们对祖国的深厚感情,而只有“母亲”这个词才能表达我们对祖国最忠诚、最纯洁、最真挚、最深厚、最伟大的感情。是啊,祖国母亲,母亲祖国,就是这样紧密相连,连成了一体。朋友,当你聆听孩子歌唱《世上只有妈妈好》时,你可能感觉到母亲对孩子的重要;当你欣赏潘美辰的《我想有个家》时,你可能体会到家庭在你心目中的位置。可是朋友,当你听到殷秀梅的《祖国啊,我永远热爱您》的时候你可曾掂量过祖国在你心中的分量?又可曾想过如何去热爱祖国,建设祖国!
演讲稿频道《公司企业的国旗下讲话演讲稿》,希望大家喜欢。尊敬的领导们、同事们:大家早上好!今天,我很荣幸的站在国旗台下与大家共同沟通一个话题,在此之前,我特别感激各位领导对我半年来的不断培养和工作的认肯,及各位同事对我的工作支持、帮助。今天我所要与大家沟通的是如何才能成为一名“金牌员工”?现实生活中,几乎所有职业人士都对成为金牌员工所倾心向往,但却很少有人能够准确说出具备怎样的关键素质才能称得上是“金牌员工”。
下面是小编为大家整理收集的关于XX幼儿园秋季国旗下的讲话演讲稿,欢迎大家阅读,希望可以帮助到你。可以借鉴的哈。“励”是鼓舞,劝勉;“志”是关于将来要有所作为的意愿和决心,是有识之士的心愿。“励志”是激发文气,以求有所作为的意思。励志,首先要有志向,有高尚、远大的理想和明确的奋斗目标。少年周恩来在全班同学面前表明了自己的心迹:要“为中华之崛起而读书”,而当时与他同班的其他同学读书的目的是为明理、为做官、为挣钱、为吃饭,只是为了满足个人修养和生活的需要,而周恩来不愿意自己的民族再软弱,不愿意自己的同胞受欺辱,他把个人的学习与民族振兴的大业联系起来,立下远大志向,为祖国的兴盛而学习和奋斗,后来成为新中国的第一任总理,受到全国人民乃至世界各国人民的爱戴。可见,高尚、远大的理想和明确的奋斗目标对人一生的引领作用有多么巨大!其次,励志一定要有实践,要为实现志向而进行不懈的努力。明朝的宋濂,他就是我们浦江人,家境贫寒但自幼好学,向别人借书来看;冬天砚台里的墨汁结成了冰,手指冻僵了他也从不停止;成年以后,他背着经书到很远的地方去寻师求教,天气严寒,路途险恶,脚上的皮肤冻裂了都不知道;到了老师那里,耐心等待,虚心请教;生活清苦,他一天只能吃上两顿饭,没有鲜美的鱼肉,穿着破衣烂袄,生活在一群衣着华丽的纨绔子弟中间,却乐在其中,一点也不羡慕别人。他一生刻苦学习,后来成为了太子的老师,明朝“开国文臣之首”。
这篇《国旗下的讲话演讲稿:致毕业生祝福》,是特地,希望对大家有所帮助!敬爱的老师、亲爱的同学们:大家好!今天是一个特殊的日子,我们全体六年级学生最后一次站在育红小学的操场上举行庄严的升旗仪式,此时此刻,我的心情是无比激动的。6年的步履塌实而又匆忙;6年的道路坎坷而又艰辛;6年的汗水辛劳而又快乐。在这里,你们不仅长了身体,也长了智慧。这里,就如一片蓬蓬勃勃的原野。春天,你们来到了这里,在这里生根、发芽,淅淅沥沥的雨声,就是老师对你们的谆谆教诲,除了学到丰富的知识,更懂得了修身之道、立身之本,明白了中华文明上下五千年的光辉历史,还了解了地球村,把目光投向浩瀚的宇宙。
导语:演讲是演讲者就人们普遍关注的某种有意义的事物或问题,通过口头语言面对一定场合的听众,直接发表意见的一种社会活动。以下是小编为您搜集整理提供到的范文,希望对您有所帮助!各位老师,各位同学:大家早上好!今天我国旗下讲话的主题是“感恩”,本周四就是西方的感恩节,其实,感恩不仅仅在西方,在中国感恩自古有之。“谁言寸草心,报得三春晖”等等,说的就是是感恩。有这样一个真实的故事:一位生活在穷乡僻壤、出身贫寒的农家子弟通过自己的刻苦努力和顽强拼搏,终于考取了当地最好的重点中学——县一中,父母为此流下了激动和高兴的泪水。孩子进入县一中读书后,因为离家近百里,于是在学校寄宿。这所学校因为是县城唯一的重点中学,所以县城许多当官及有钱人家的孩子几乎都送到这里来读书,也使得校园攀比之风盛行,渐渐地,这位农民的孩子因为家境贫寒感到很自卑,总觉得自己在别人面前抬不起头,对那些有钱的同学特别羡慕。有一次,年迈的母亲在一个寒冷的冬天,为了节省几元钱的车费给孩子送冬天的衣服,硬是赶了近一天的路走到学校给孩子送冬天的衣服和食物。当疲惫不堪、穿着破旧、日见苍老的母亲敲开教室的门时,老师问她找谁,她说了自己孩子的姓名,然而,当老师问这位孩子她是你什么人时,这位孩子居然像犯了错误似的,脸涨得通红,小声地说她是我家的一个亲戚。当这句话传到站在门外把他含辛茹苦养育大的老母亲耳里时,老母亲愣住了,眼里涌出了泪花,她一句话也没说,把东西交给了老师,转身走进凛冽的寒风里。
导语:演讲稿像议论文一样论点鲜明、逻辑性强、富有特点,但它又不是一般的议论文。它是一种带有宣传性和鼓动性的应用文体,经常使用各种修辞手法和艺术手法,具有较强的感染力。以下是小编为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!老师们,同学们,大家好!我演讲的题目是《今天,奋斗的起点》。昨天带着回忆默默地远去了,今天携着希望悄悄地来临了,而明天又闪烁着光辉等待着我们。有的人沉浸在回忆中,他们依恋昨天;有的人只沉醉在梦幻中,他们盼望明天。这两种人都忘记了最应当珍视的是宝贵的今天。今天,不就是短短的一天吗?我从明天开始勤奋学习。今天不就是区区的二十四小时吗?我从明天开始认真工作。今天不就是三百六十五分之一吗?我从明天开始为共-产主义事业而奋斗。有些人这样想,也是这样做的。朋友,我绝不怀疑你的真诚,但为什么把要做的事放到明天,一切从明天开始呢?日月匆匆,终于等到了明天,但明天又变成了今天,而每个今天之后都有无穷无尽的明天。那么,你的决心、你的理想,哪一天才能变为行动、变为现实呢?莎士比亚说:抛弃时间的人,时间也会抛弃他。我说:抛弃今天的人,今天也会抛弃他;而被今天抛弃的人,他也就没有了明天。
导语:演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。 演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。以下是小编为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!普通话,请从我做起普通话是每个人都应该会说的,是一种以北京语言为标准音,以北方方言为基础方言,以典范的现代白话文著作为语法规范的一种通用的语言形式。普通话是我们学习说话的第一步,也是做一个文明人的第一步,要是一个人连最基本的普通话都不会说,他还怎么去和别人交流呢?普通话已深入到我们日常的学习和生活中,无论我们在干什么,普通话都回荡在我们周围的每一个角落。有人可能会问,“为什么要说普通话呢?”因为中国是一个多民族、多语言、多方言的国家,根据著名的语言学家周光有先生讲,我国56个民族共有80多种彼此不同的语言和地区方言,而我们每一个人又不可能一辈子都生活在同一个地方,固步自封,不去见识外面的世界吧,所以一旦我们身处异乡,便会遇到语言方面的障碍,不能与人沟通、交流。这时,如果我们都会说一种共同的语言——普通话,那么,就不用再为语言不通而急得满头大汗、不知所措了。
昨日的辉煌,已成为历史,今天的成就,会更加灿烂。把握今天,把握分分秒秒的学习时间;铭记感动人心每一个瞬间。汶川,一场突如其来的地震震惊全国,灾区人民用他们坚韧的毅力和不灭的斗志与天灾搏斗,这就是中华儿女坚持不懈,永不言弃的精神。高三的学哥学姐们,用亮剑的精神勇赴考场,勇敢面队人生最重要的转折点,今天的我们是否也应该奋发图强,为自己美好的明天而奋斗?07年9月,我们来到了荫营中学,这个让我们磨练意志,挥洒汗水,完成生命中最美丽一搏的地方,为了一个共同的目的:考上心仪的大学,成就我们辉煌的人生。这里良好的教育与学习环境就是我们实现自己的阶梯,提高自我的学习质量,学习效率,才能更快的达到自己的目标,实现人生理想。
以下是《关于国庆节的演讲稿:国旗下讲话》的文章,供大家学习参考关于国庆节的演讲稿:国旗下讲话当国旗炽焰般的身影与天际晨光彤红的胸膛融成一片辉煌之时,我们光奋了!假如我们的父辈们在49年前为了她的升起而兴奋的话,49年后的今天,在又一个国庆节即将到来之即,当我们发现她日趋成熟之时,我们也兴奋了!49年过去了,对于一个人,49年可以写一部长篇巨著了,但对于一个共和国来说,却是短暂的,她可以汇成烟波浩渺的著述,但我们却更能用四个字来概括,那就是“奋进、开拓”。在如此瑰美的早晨,我们又和国旗相遇,当她饱蘸着革命者和建设者鲜血的火红的身影随风飘扬的时候,我们感受到了她的成熟,她的男性般坚实的臂膀,她的母性般温柔的胸怀,我们深情地致她一个敬礼,随即奉上的是我们一片祖国赤子的深情。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。