⑴、理解小数乘法交换律、结合律和分配律的意义,能运用运算定律进行小数的计算简便。⑵、经历发现归纳小数乘法交换律、结合律、分配律的全过程。学习“猜测—验证”的科学思维方式,提高类比、分析、概括的能力。⑶、在合作交流的学习活动中,提高人际交往能力。4、教学重点、难点从猜测—验证中归纳乘法交换律、结合律和分配律。二、教法和学法1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
《较复杂的小数乘法》是第九册第一单元《小数的乘法和除法》的第三节。本 节课的教学内容是教科书第3页的例3、例4。这一教材是在学生学习了小数乘法的意义(小数乘以整数、一个数乘以小数)、小数乘法的计算法则以及小数点位置 移动引起小数大小的变化的基础上进行教学的,它是小数乘法计算法则的引伸和补充,同时也是学生今后进一步学习小数四则混合运算的基础。本节课 的教学目的是:1、使学生进一步掌握小数乘法的计算法则,懂得在点积的小数点时,乘得的积的小数位数不够的,要在前面用0补足;2、使学生初步掌握“当乘 数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大”;3、培养学生的计算能力,自学能力和概括能力。本节课的教学重点是:让学生掌握在定积的小数 时,位数不够的会用0补足。
1.数字编码越来越重要,了解编码的含义,会给人们的生活、工作带来很多的便利。公安机关常常利用一些编码侦破案件。请同学们看个短片,仔细观察,你能找出对破案有用的线索并说出理由吗?生答。是的,公安人员根据这些线索很快将犯罪嫌疑人抓获。2.运用数字或符合来描述事物可以更简洁准确。看到这个号码不用知道名字就能找到这个人。首先请同学们仔细想一想,号码中要体现哪些方面的内容?先自己想再到小组中交流,组长记录下讨论的结果。生讨论结束后师实物出示结果,追问:①其他小组还有什么不同意见吗?集体讨论得出结果:编入入学时间、班级序号、班级学号、性别等。追问:②按什么顺序编排比较合理呢?生讨论得出按入学时间、班级序号、班级学号、性别的顺序。其次学生给自己编号码,师实物出示提问:看到这个号码,你能找到这个人吗?生根据号码找到这个人。
第三个层次,是通过师生互动,以身份证号码为例,初步了解蕴含的一些简单信息和编码的含义;通过小组对自己带来的身份证号码进行观察、比较、猜测来探索数字编码的简单方法;通过连线、判断等初步应用,进一步巩固数字编码的简单方法。第四个层次,是通过学生互动交流自己的学号,初步体验编码的过程。在整个教学中,教师不束缚学生的手脚,而让学生充分谈论他所调查、了解到的每一个信息,为学生的发展提供充分的土壤和水分,让他们自己发挥想象:“从身份证号码中你能获得哪些信息呢?”“你能给自己编一个学号吗?”问题逐层递进,使学生思维上台阶,也使不同层次学生得到不同的发展,营造一个培养学生创新思维的空间。这样做可以使学生真正成为知识的探索者、发现者和创造者,从而使学生保持一种经久不衰的探究心理,形成勇于探索、勇于创新的科学精神,是促使学生可持续发展的一种教学活动。
在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,由于小数四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的是使学生熟记小数四则混合运算顺序,提高计算能力。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:1.能否正确把握运算顺序。2.能否正确标明根据以上教学目的,为了更好地突出重点,突破难点,在教学中遵循大纲的要求,从简单入手。例1是最简单的两步计算题,让学生熟悉一下运算顺序。再过渡到较复杂的问题。例2是三步计算带小括号的较复杂的四则混算题,在运算过程中出现了除不尽的情况,应说明计算过程中,当除得的商超过两位小数时,一般只需保留两位小数,再进行计算。最后进入到教学重点、难点阶段。
正方体的体积=棱长×棱长×棱长用字母a表示棱长,V=a×a×a.也可以写成a3读作a的立方.表示3个a相乘.不要误认为a与3相乘。写a3时3写在a的右上角要写小些.所以正方体的体积公式一般写成: V=a3(五)、巩固练习、运用公式练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式.我设计了多层次的练习。1、通过让学生完成看图求体积,这样有助于学生理解长方体正方体的体积与它的长宽高的关系,记住长方体的体积计算公式.2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。
一、说教材“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。二、说教学目标1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.2.通过观察、比较、归纳,提高学生综合概括推理的能力.三、说教学重点理解正反比例的意义,掌握正反比例的变化的规律.四、说教学难点理解正反比例的意义,掌握正反比例的变化的规律.五、说学情在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和 “反”的理解不够到位。
1、说内容:百分数的意义和写法是人教版义务教育课程标准实验教科书六年级数学上册第五单元的内容。2、说教材:这部分内容是在学生学过整数、小数特别是分数的意义和应用的基础上进行教学的。百分数的意义和写法是本单元的基础,学生只有理解了百分数的意义,才能正确地运用它解决实际问题。二、学情分析:百分数对于六年级学生来说并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数意义的理解还不十分准确,学生极易把百分数等同于分母是100的一般分数。因此教学中如何激活学生的相关经验,及时引导学生理解百分数和分数的联系与区别,让学生完成百分数意义的建构,显得尤为重要。三、教学目标:1、知识与技能:让学生经历从实际问题中抽象出百分数的过程,体会引入百分数的必要性,理解百分数的意义,会正确读写百分数。
教材分析:例2以学校兴趣小组为题材,引出稍复杂的已知一个数的几分之几是多少,求这个数的实际问题。用算术方法解决这样的实际问题,不仅需要逆向思考,还要把“比一个数多它的几分之几”,转化为“是一个数的几分之几”,比较抽象,思维难度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要经历从“多几分之几”到“是几分之几”的转化,实际上是方程的形式,算术的思路。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。学情分析:由于小学生目前尚未接触到比较复杂的,用算术方法很难解决的实际问题,所以对方程解法的优越认识不足。一些学生觉得用方程解需要写设句,比较麻烦,因此喜欢用算术解法。对此,教师一方面应肯定学生自己想到的正确解法,另一方面又要因势利导,从进一步学习的需要与方程解法的特点等角度,使学生初步了解学习列方程解决问题的重要性。从而提高学习用方程解决问题的自觉性和积极性。
一、说教材 说课的内容是《义务教育课程标准实验教科书 数学》一年级上册第六单元:《6—-10的认识和加减法》中的第二课时。这部分教材是为学生快速而正确进行6和7加减法计算做铺垫的内容。在这一阶段通过让学生初步经历从日常生活中抽象出数的过程,借助于生活中的实物和学生的操作活动进行教学,为学生了解数学的用处和体验数学学习的乐趣打下扎实的基础。基于以上认识,我确定本课的教学目标为: 1、知识目标:通过动手摆学具教学使学生学会从实际生活中抽象出数,掌握6和7的组成。 2.能力目标:培养学生观察、动手操作、口头表达的能力,渗透数学来源于生活,理解数学与日常生活的紧密联系,并运用于生活的辨证唯物主义思想。 3.情感目标:通过探究活动,激发学生学习的热情,培养学生主动探究的能力。 教材的重点、难点: 本节课的重点是:掌握6、7的组成。 本课难点是: ‘6、7的组成’在实际中的灵活运用。
1、多媒体情境:林可看大家准备得很辛苦,便从家里带了10瓶饮料要个伙伴们喝,可是一个袋子装不完,想分为两个袋子装,她可能会怎样装呢?2、用学具代替饮料,亲自动手摆一摆。并说一说你是怎么分的?3、汇报不同的分法。(结合汇报情况,多媒体演示10的组成)4、同桌交流:用什么方法记住10的组成?5、游戏:师生互动老师说一个数,学生说一个数,两个数组成10。生生互动说数并出手指,两个同学出的手指合起来是10。(从创设情境,学生动手操作,同桌交流,都体现了使学生成为学习的主人,这是小学数学课堂教学模式改革的方向。允许学生用自己已有的数的分成经验,用不同的方法去学习,使不同的学生在学习上得到不同的发展,体现了因材施教的过程。并在游戏中化抽象为具体,化枯燥为愉悦,实现学生在轻松快乐的氛围中深化感知。)
长度测量是其它测量的基础,而且学生虽然接触过有关长度的测量,但技能还很不稳定,更是不规范。所以本内容强调教师指导作用,教师及时纠正学生的错误操作,并组织讨论错误测量引起的测量值偏差,测量结果的正误。教学定位应力求实验操作规范,观察认真细致,给学生以示范作用。5、建立一个人体尺度意义提问:如果我们手边没有刻度尺,又需要粗略地知道物体(如科学课本、课桌、教室……)的长度时,你有什么办法吗?(提问,给出了建立人体尺度的目的)(可能回答:用人体的指距、跨步距离……进行粗测)学生分组实验:利用人体的指距、跨步距离……粗测课桌的长和宽、教室的长和宽,并与用刻度尺测量的结果进行对照。以上做法相当于学生在自己身上设置了一把尺子,这把尺子与身体的其他“尺子”联系在一起,还可以做出其他许多的估计,有利于因地制宜培养学生的估测能力。
3.导入新课师:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)设计意图:知识的学习过程有一个最近发展区,通过口算和保留一定位数的小数这两块复习,可以训练孩子们的口算技能和唤起用“四舍五入”法求近似数的方法,为求积的近似数进行正迁移。二、探索情境问题,形成求积的近似值的方法1.创设情境问题,并理解题意[多媒体展示:人与狗的嗅觉细胞介绍情境动画,引出情境问题]人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?(得数保留一位小数)师:请同学们自由读题,并说说已知条件和所求的问题。学情预设:情境问题的已知和所求的问题都很明朗,只要能理解求一个数的几倍是多少用乘法计算即可。
自主探究法:教学中强调以学生为主体,强调学生参与知识的形成过程,始终做到为学生提供充足的学习素材、创设充分学习的空间、时间,让学生自主探究,体验知识形成的过程,培养主动探究的能力。观察法:例1观察物体教学中的观察是很好的学习方法。例如,教学例1时,观察目的明确。教师通过让学生观察长方体物体学会从不同角度观察物体的方法。这一安排不仅给学生独立思考的机会,而且教给学生观察的思维方法。四、说教学程序在提出问题中,引发学生思考;在自主探索中,激发学生创新思维;在展示交流中,感受学生的个性;在总结陈述中,体验成功的乐趣;在联想记忆中进一步发挥学生的创造才能。在设计这节课时,我在尊重教材的基础上,力求体现新课标的新理念、新思想,导学案中设计了以下几个教学环节:
三、说学法(一)学情分析经过初中阶段对文言文的学习,学生初步了解一些文言实词的意见、常见虚词的用法以及词性活用、古今异义、通假字等文言现象。但多靠机械记忆,忽略在文章内容及句义章法的理解把握前提下记忆。且较少对点滴的文言知识进行归纳整理。(二)学法指导1、圈点评注法学习课文时用一些简单醒目的符号,在字、词、句、段上勾画,标记疑问,评注阅读时的感受、体会。形成自己的圈点勾画的符号系统,使用符号时不应随意变动,以便重读复习文章。2、通过“粗读”“通读”“品读”“齐读”“个别范读”等多种形式的朗读,指导学生整体把握文章内容及思路。在此前提下,设计迁移阅读,引导学生触类旁通,学以致用,达到以读促说,以读促写。四、说教学程序(第一课时)
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
3. 教学任务二:PPT子任务一、二、三感悟诗情:那么为什么不能轻易对诗人诗歌进行删减呢?除了诗歌语言及内容方面的影响外,还有重要的一点就是:感情。情感是诗歌的尺度,而非长短。下面将从知人论世的角度再读诗歌。重点赏析曹操的“忧”与“解”和陶渊明的“误”与“归”。通过编写诗人年谱的方式,呈现诗人的各个人生阶段的经历和当时的时代背景,让诗人回到历史现场,让自己代入诗人境遇,以意逆志。通过查阅资料和编写年谱,可以了解到:曹操既能横槊,又能赋诗,如曹丕在《典论·自叙》中所说:“上(曹操)雅好诗文书籍,虽在军旅,手不释卷。”《短歌行》中多用典故和善用比兴或许就源于此。其次,曹操虽出身仕宦,但门第不算高贵,这样的家庭地位让他有着出人头地、建功立业的迫切愿望,因此,“唯才是举”是曹操出于现实的理性选择。再次,曹操写《短歌行》的确切时间已难考证,如取赤壁大战前的说法,曹操已五十四岁,来日无多的紧迫感、贤才归附的愿望自然尤为强烈。
第二课时为知人。即利用预习所查到的资料、学生之间的分享以及教师预备的材料,合作探究三个问题:曹操为何如此渴望贤才?天下归心的愿望是否实现?如何评价曹操?本课时采用创设情境的方式,从刘备、曹丕、晚年曹操等多重角度评价曹操,自领角色,利用资料有逻辑地证明自己的观点。教师出示不同学者评价,师生共同研讨评价的技巧和原则,尝试写作短小文学评论。这是解决忧的果。第三课时为回味。创设诵读比赛的情境,在比赛和评价中研讨标点符号的作用,如何读出曹操诗歌独特的特点,以及带着对曹操的认识读出自己的理解。(每组评出最佳朗读者和最佳评论员,上传优秀视频)。这是为了让学生最后读出忧。第五,板书设计。以上是我本节课教学设计的板书,体现了分析本首诗的基本思路和学习方法。
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。